% \magnification=1200\input carlformat\def\cite#1{[#1]}\parskip10pt % % %B-splines for the Bernstein knots % %
Click here %for a more readable version of this page. %
%

B-splines for the Bernstein knots %

Since $$%
1 = (t + (1-t))^{k-1} = \sum_{j=0}^{k-1} {k-1\choose j} t^j(1-t)^{k-1-j}, $$%
the (nontrivial) normalized B-splines for the Bernstein knots $$%
\openB := (\ldots, 0, 0, 0, 1, 1, 1, \ldots) $$%
are $$%
N(t|\underbrace{0,\ldots,0}_{k+1-\mu\,\rm times}, \underbrace{1,\ldots,1}_{\mu\,\rm times}) = {k-1\choose \mu-1} t^{\mu-1} (1-t)^{k-\mu}, \quad \mu=1,\ldots,k. $$%
Those normalized to integrate to 1 therefore are $$%
M(t|\underbrace{0,\ldots,0}_{k+1-\mu\,\rm times}, \underbrace{1,\ldots,1}_{\mu\,\rm times}) = k! \braket{t}^{\mu-1} \braket{1-t}^{k-\mu}, \quad \mu=1,\ldots,k $$%
(with $\braket{t}^j:= t^j/j!$ the normalized power function). %

It follows that, for any smooth $f$, $$%
[\underbrace{0,\ldots,0}_{k+1-\mu\,\rm times}, \underbrace{1,\ldots,1}_{\mu\,\rm times}] f = \int_0^1\braket{t}^{\mu-1}\braket{1-t}^{k-\mu} D^kf(t)\dd t. $$%
Since, by the Genocchi formula, $$%
[t_0,\ldots,t_k]f = \int_{[t_0,\ldots,t_k]} D^kf, $$%
a linear change of variables finally gives $$%
\int_{[\underbrace{x,\ldots,x}_{k+1-\mu\,\rm times}, \underbrace{y,\ldots,y}_{\mu\,\rm times}]} g = \int_0^1\braket{t}^{\mu-1}\braket{1-t}^{k-\mu} g(x + t(y-x))\dd t. $$%
% % \bye