The B-spline Gramian
Since

$$
\Delta\left(t_{0}, \ldots, t_{k}\right) f=\int M\left(\cdot \mid t_{0}, \ldots, t_{k}\right) D^{k} f / k!
$$

with M the B-spline normalized to have integral 1, some integrals of the form

$$
\int M\left(\cdot \mid t_{0}, \ldots, t_{k}\right) g
$$

can (and certainly have been) computed from knowledge of divided differences, as long as it is easy to obtain $D^{-k} g$ and compute its divided difference. See pages004 B-spline $/ \mathrm{A}_{i}$ for moments or the Fourier transform of a B-spline.

In particular, with

$$
N\left(y \mid t_{j}, \ldots, t_{j+h}\right)=\left(t_{j+h}-t_{j}\right) \Delta\left(t_{j}, \ldots, t_{j+h}\right)(\cdot-y)^{h-1}
$$

the B-splines (of order h) normalized to sum to 1 , we compute

$$
\begin{aligned}
& \int M\left(\cdot \mid t_{i}, \ldots, t_{i+k}\right) N\left(\cdot \mid t_{j}, \ldots, t_{j+h}\right) \\
& \quad=(-1)^{k}\binom{k+h-1}{k}\left(t_{j+h}-t_{j}\right) \Delta\left(t_{i}, \ldots, t_{i+k}\right)_{x} \Delta\left(t_{j}, \ldots, t_{j+h}\right)_{y}(x-y)_{+}^{k+h-1}
\end{aligned}
$$

The special case $h=k$ appears already, in slightly different normalization, on p .662 in
Jerome, J., Schumaker, L. L.; A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent; SIAM J. Numer. Anal.; 5; 1968; 657-663;
last updated 07mar04

