local interpolation

In BirkhoffBoor64, there is an unsupported (and actually misprinted) claim about the minimum polynomial degree achievable by a local interpolation scheme to data values $\left(y_{j}\right)$ at a corresponding strictly increasing sequence $\left(x_{j}\right)$ of interpolation sites by $C^{(m)} \mathrm{pp}$ functions with breaks only at the x_{j}.

Write such an interpolant as a linear combination of B-splines of order k. Since it is to be in $C^{(m)}$, each x_{j} may appear $k-(m+1)$ times in the corresponding knot sequence t. We are now looking for the smallest M for which the linear system

$$
\begin{equation*}
\sum_{x_{r-M} \leq t_{j}<t_{j+k} \leq x_{r+M}} B\left(x_{i} \mid t_{j}, \ldots, t_{j+k}\right) a(j)=\delta_{i r}, \quad i=r-M+1, \ldots, i+M-1, \tag{1}
\end{equation*}
$$

has a solution, and cannot hope for one unless $k>m+1$. This is a linear system of $2 M-1$ equations in $(2 M+1)(k-(m+1))-k=2 M k-(2 M+1)(m+1)$ unknowns, hence having nontrivial solutions requires $2 M-1 \leq 2 M k-(2 M+1)(m+1)$ or $m \leq 2 M(k-m-2)$), hence, for $m>0$, we need

$$
k>m+2 .
$$

On the other hand, if $k>m+2$, then we can choose

$$
M:=\lceil m /(2(k-m-2)))\rceil \text {, }
$$

and, with such a choice, know that, after setting in (1) some unknowns to zero, we obtain a square linear system that satisfies the Schoenberg-Whitney conditions (i.e., has nonzero diagonal entries), hence is invertible.

Simplest examples are:

$$
\begin{aligned}
& m=0 \quad L_{r}=B\left(\cdot \mid x_{r-1: r+1}\right) \text { i.e., broken line interpolation }(k=2) \\
& m=1 L_{r}=B\left(\cdot \mid x_{r-1}, x_{r-1}, x_{r}, x_{r}, x_{r+1}\right)+B\left(\cdot \mid x_{r-1}, x_{r}, x_{r}, x_{r+1}, x_{r+1}\right),(k=4, M=1) \\
& m=2 L_{r}=B\left(\cdot \mid x_{r-1}, x_{r-1}, x_{r}, x_{r}, x_{r+1}, x_{r+1}\right),(k=5, M=1)
\end{aligned}
$$

But none of these reproduces more than just Π_{1}. If we want to reproduce Π_{s} for $s>1$, we have to work harder, and M has to increase.

Have a look at Rutishauser's Glatte Interpolation which achieves a local interpolant in $C^{(r)}$ by piecewise polynomials of degree $2 r+1$ with breaks only at the data sites, and the polynomial piece on $\left[x_{i} \ldots x_{i+1}\right]$ only depending on the $2 r+2$ data values $y_{i-r}, \ldots, y_{i+1+r}$, and reproducing all polynomials of degree $\leq 2 r$.

