local interpolation

In BirkhoffBoor64, there is an unsupported (and actually misprinted) claim about the minimum polynomial degree achievable by a local interpolation scheme to data values (y_j) at a corresponding strictly increasing sequence (x_j) of interpolation sites by $C^{(m)}$ pp functions with breaks only at the x_j .

Write such an interpolant as a linear combination of B-splines of order k. Since it is to be in $C^{(m)}$, each x_j may appear k - (m+1) times in the corresponding knot sequence t. We are now looking for the smallest M for which the linear system

(1)
$$\sum_{x_{r-M} \le t_j < t_{j+k} \le x_{r+M}} B(x_i | t_j, \dots, t_{j+k}) a(j) = \delta_{ir}, \quad i = r - M + 1, \dots, i + M - 1,$$

has a solution, and cannot hope for one unless k > m+1. This is a linear system of 2M-1 equations in (2M+1)(k-(m+1))-k = 2Mk-(2M+1)(m+1) unknowns, hence having nontrivial solutions requires $2M-1 \le 2Mk-(2M+1)(m+1)$ or $m \le 2M(k-m-2))$, hence, for m > 0, we need

$$k > m + 2.$$

On the other hand, if k > m + 2, then we can choose

$$M := \lceil m/(2(k-m-2))) \rceil,$$

and, with such a choice, know that, after setting in (1) some unknowns to zero, we obtain a square linear system that satisfies the Schoenberg-Whitney conditions (i.e., has nonzero diagonal entries), hence is invertible.

Simplest examples are:

$$m = 0 \ L_r = B(\cdot|x_{r-1:r+1}) \text{ i.e., broken line interpolation } (k = 2)$$

$$m = 1 \ L_r = B(\cdot|x_{r-1}, x_{r-1}, x_r, x_r, x_{r+1}) + B(\cdot|x_{r-1}, x_r, x_r, x_{r+1}, x_{r+1}), \ (k = 4, \ M = 1)$$

$$m = 2 \ L_r = B(\cdot|x_{r-1}, x_{r-1}, x_r, x_r, x_{r+1}, x_{r+1}), \ (k = 5, \ M = 1)$$

But none of these reproduces more than just Π_1 . If we want to reproduce Π_s for s > 1, we have to work harder, and M has to increase.

Have a look at Rutishauser's Glatte Interpolation which achieves a local interpolant in $C^{(r)}$ by piecewise polynomials of degree 2r + 1 with breaks only at the data sites, and the polynomial piece on $[x_i \dots x_{i+1}]$ only depending on the 2r + 2 data values $y_{i-r}, \dots, y_{i+1+r}$, and reproducing all polynomials of degree $\leq 2r$.

last updated 12may09