## Rutishauser's "Glatte Interpolation"

Rutishauser's paper [R] (some have claimed that its results can already be found in [J]) contains the following construction, worked out explicitly there for data $P_{i}:=\left(x_{i}, y_{i}\right)$, with $x_{i}=x_{0}+i h$, all $i$. Rutishauser obtains an interpolant $q$ to such data that is piecewise polynomial of degree $\leq 2 r+1$ with breaks at the $x_{i}$ and has $s$ continuous derivatives and, on the interval $\left(x_{i} \ldots x_{i+1}\right)$, depends only on the $2 r+2$ data points $P_{j}$, $j \in i+R$ with $R:=(-r):(r+1)$.

Explicitly, on the interval $\left(x_{i} \ldots x_{i+1}\right)$, the interpolant is of the form

$$
\begin{equation*}
q_{i+1 / 2}(x):=p_{i+1 / 2}(x)+\psi(t(x))\binom{t(x)+r-s}{2 r-2 s+2} \delta_{i+1 / 2}^{2 r+1} y \tag{1}
\end{equation*}
$$

with $p_{i+1 / 2}$ the unique polynomial of degree $\leq 2 r+1$ that matches the $2 r+2$ data points $P_{j}, j \in i+R$, with $t(x):=\left(x-x_{i}\right) / h$, with $\psi$ a certain polynomial of degree $2 s-1$ and odd around $1 / 2$, and with $\delta_{i+1 / 2}^{2 r+1} y$ the central difference of the $y_{j}, j \in i+R$. Moreover, Rutishauser proves that, for $s=r$, his construction provides the unique solution of this form, i.e., as the standard central local polynomial interpolant modified locally in such a way that the resulting pp function is in $C^{(r)}$.

Here is a quick argument for Rutishauser's claim: Directly from (1), we conclude that the construction reproduces any polynomial of degree $\leq 2 r$ (as the $2 r+1$ st difference for such data is zero). Rutishauser quite explicitly makes this point, namely that he achieves the smoothness at the loss of only one order of approximation. Further, the $i$ th piece, $q_{i+1 / 2}$, depends (linearly) only on the data $P_{j}, j \in i+R$. This means that the matching information, i.e., the numbers $q_{i-1 / 2}^{(j)}\left(x_{i}\right)=q_{i+1 / 2}^{(j)}\left(x_{i}\right), j=0: s$, can only depend on the information common to both $q_{i-1 / 2}$ and $q_{i+1 / 2}$, i.e., on $P_{j}, j \in i+(-r): r$. Hence, if we also demand that $s=r$, then, necessarily,

$$
q^{(j)}\left(x_{i}\right)=p_{i}^{(j)}\left(x_{i}\right), \quad j=0: r
$$

with $p_{i}$ the unique polynomial of degree $\leq 2 r$ matching the $P_{j}, j \in i+(-r): r$. But once we know $q$ in this way $r+1$-fold at $x_{i}$ and $x_{i+1}$, we know it on $\left(x_{i} \ldots x_{i+1}\right)$ since, there, it is just a polynomial of degree $\leq 2 r+1$.

Note that this argument actually works for arbitrary spacing of the $x_{i}$, though one may have to work harder to get Rutishauser's explicit formula for this general case.

Smooth local piecewise polynomial interpolation, particularly for uniformly spaced data sites, was an interesting topic in the middle of the last century; see, e.g., Schoenberg's fundamental 1946 paper [S] which also summarizes the earlier work of the actuarians such as [J].
[J] W. A. Jenkins (1926), "Osculatory interpolation: new derivation and formulas", Record Amer. Inst. Actuar. 15, 87-98.
[R] Heinz Rutishauser (1960), "Bemerkungen zur glatten Interpolation", Z. Angew. Math. Phys. 11, 508513.
[S] I. J. Schoenberg (1946), "Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing or graduation, a first class of analytic approximation formulas", Quart. Appl. Math. 4, 45-99.

