
smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998the smoothing spline with weighted roughness measureCarl de BoorThe smoothing spline, f = f�, of Schoenberg [S] and Reinsch [R1], [R2], uniquelyminimizes �Xj wj(yj � f(xj))2 + Z ba �(Dmf)2over all f in X := L(m)2 [a : : b];given the points x1 < � � � < xN in [a : : b], the data y = (yj), the weight vector w = (wj)of positive weights (usually equal to 1), the smoothing parameter � 2 [0 + : :1�], andthe natural number m, in the special case that � = 1. Over the years, this smoothingspline, particularly after the introduction of generalized cross validation by Wahba and??? [ citWK ] for an automatic choice of the smoothing parameter, �, and for m = 2,has become the spline most often used in practical problems of data �tting and analysis.However, use of a nonconstant weight � in the roughness measure R �(Dmf)2 providesadditional, very useful, 
exibility in the shaping of the smoothing spline. It is the purposeof this note to provide a simple derivation of the numerical algorithm needed to constructsuch a more complex smoothing spline, for given � and �. This derivation shows that,for a piecewise constant � with breaks only at the xj , the algorithms for the case � = 1only need minor adjustments to provide this potentially very useful added capability. Thederivation is given in full, in a somewhat nonstandard way.It seems simplest to me (and to some others, see, e.g., [A] and the references there) toview this minimization problem as a special case of best approximation in an inner productspace, as follows: Use the linear maps� : X ! Y := IRN : f 7! f x := �f(xj)�Nj=1; � : X ! Z := L2[a : : b] : f 7! Dmf;to embed X in the Hilbert space H := Y � Zwith natural inner product h(f; g); (h; k)i := �hf; hiY + hg; kiZwith hf; giY :=Xj wjfjgj; f; g 2 IRN ;hf; giZ = Z ba �fg; f; g 2 L2[a : : b]:Assuming as we do that 0 < � <1, the only issue here is whetherX ! H : f 7! (�(f); �(f))1



smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998is an embedding and whether, with this embedding, X becomes a closed subspace of H.For the former, it is necessary and su�cient thatker� \ ker� = f0g;and, since ker� = ff 2 X : f x = 0g; ker � = �<m(the space of polynomials of degree < m), this will be so i� N � m, an assumption wemake from now on. As to the latter, it is, in essence, the claim that D, hence Dm, is aclosed linear map. Explicitly, I take for granted the standard representation theorem(1) f = Ta;mf + R�(f); 8f 2 X;\taylor with Ta;mf the Taylor polynomial of order m for f at a and withR : Z ! X : g 7! Z ba (� � s)m�1+ g(s) ds=(m� 1)!:This identi�es X as the sum �<m + R(Z) of a �nite-dimensional linear subspace (whichtherefore is closed) and the subspace R(Z) which is closed, hence X itself is closed.Thus, the smoothing spline f� is the unique best approximation from X � H to theelement (y; 0) 2 H, hence is characterized by the fact that the error, (y; 0)�(�(f�); �(f�)),is perpendicular to X � H, i.e.,(2) �hy � �(f�); �(f)iY + h��(f�); �(f)iZ = 0 8f 2 X:\orthog Since ker � = �<m, (2) implies that(3) hy � �(f�); �(f)iY = 0 8f 2 �<m\orthogY and, with this and (1), (2) implies that(4) �hy � �(f�); �(Rg)iY = h�(f�); giZ 8g 2 Z:\orthogZ Conversely, (3){(4) imply (2).Since the left side of (4) is a continuous linear functional as a function of g, it isexpressible in the form hz; giZ for some z 2 Z. Explicitly, with h := y � �(f�),hy � �(f�); �(Rg)iY =Xj wjhj Z ba (xj � s)m�1+ g(s) ds=(m� 1)!= Z ba �Xj wjhj (xj � s)m�1+ =(m� 1)!�g(s) ds= h 1�Xj wjhj(xj � �)m�1+ =(m� 1)!; giZ:2



smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998It follows that (4) is equivalent to(5) �Xj wj(yj � f�(xj))(xj � �)m�1+ =(m� 1)! = �Dmf�:\orthogZZ This shows that Dmf� is a spline of order m with knot sequence x, and vanishes to theright of xN . However, by (3),Xj wj(yj � f�(xj))(xj � �)m�1=(m� 1)! = 0;hence, with (xj � t)m�1+ = (xj � t)m�1 � (�1)m�1(t� xj)m�1+ , also(6) �(�1)mXj wj(yj � f�(xj))(� � xj)m�1+ =(m� 1)! = �Dmf�;\orthogZZZ showing that Dmf� also vanishes to the left of x1. Consequently, �Dmf� is an elementof Sm;x (i.e., for � = 1, f� is a `natural' spline of order 2m with break sequence x). Inparticular, we may write(7) �Dmf� =:Xk Bk;m;xck;\defc with Bk;m;x the normalized B-spline with knots xk; : : : ; xk+m, i.e.,Bk;m;x(t) = (xk+m � xk)[xk; : : : ; xk+m](� � t)m�1+=Xj (xj � t)m�1+ cj;k;withcj;k := � (xk+m � xk)=Qf(xj � xi) : i 2 fk; : : : ; k +mgnfjgg; j = k; : : : ; k +m;0; otherwise.Thus, on expressing �Dmf� in (5) in this way and comparing coe�cients of (xj � �)m�1+ ,we obtain(8) �W (y � �(f�)) = Cc;\relationone with W := diag(w); C := (m� 1)!(cj;k : j = 1; : : : ; N ; k = 1; : : : ; N �m);and c the B-spline coe�cient sequence for �Dmf�, as de�ned in (7). Now note that, forany f 2 X,(9) (Ct�(f))j = (m� 1)! (xj+m � xj)[xj; : : : ; xj+m]f = Z ba Bj;m;xDmf:\Cta 3



smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998Therefore, any �(f�) satisfying (8) automatically satis�es (3), since, for any such �(f�)and any d 2 X,hy � �(f�); �(f)iY = �(f)tW (y � �(f�)) = �(f)tCc=� = (Ct�(f))tc=�;while Ct�(f) = 0 for f 2 �<m by (9). Since (8) with (7) implies (5), hence (4), it followsthat, with (7), (8) is equivalent to (2). We therefore now concentrate on (8).For that, from (9) with (7),(10) Ct�(f�) = Ac;\relationtwo with A := (Z ba Bj;m;xBk;m;x : j; k = 1; : : : ; N �m):Substitution of (8), in the form(11) �(f�) = y � W�1C(c=�);\equationfora into (10) gives the equation(12) Cty = (CtW�1C + �A)(c=�)\equationforc which may be solved stably for u := c=�, for given data y (since its coe�cient matrixis symmetric positive de�nite). From this, we obtain the smoothed values �(f�) directlyfrom (11). To obtain f�, integrate the resulting Dmf� = (1=�)Pj Bj;m;xcj m times , toobtain f := D�m(Dmf�), which di�ers from f� only by some q 2 �<m. Determine this qas the unique q 2 �<m for which �(q + f) = �(f�), i.e., for which �(q) = �(f�) � �(f),with the vector �(f�) computed from (11).It is only at this point, of m-fold integration, that the choice of the weight � in theroughness measure begins to matter (other than an assumption that � be measurable andessentially positive, to ensure that h ; iZ is an inner product). For the special case � = 1,one would use the standard formula, see, e.g., [pgs: p.150], to carry out the integration,obtaining, in that case, f� as a natural spline of order 2m with simple interior knots(xi : i = 2; : : : ; N � 1). While the integration can be carried out in closed form for asomewhat larger class, we will, at this point, restrict attention to those � for which f� isstill piecewise polynomial and, speci�cally, on the simplest of these, namely the piecewiseconstants with breaks only at the xi, i.e.,(13) � 2 �1;x:\choicegl Others (e.g.,[ cit??? ],[ cit??? ]) have considered � that are reciprocals of continuous piece-wise linears with breaks only at the xi), presumably in order to avoid the jumps in Dmf�introduced when � is piecewise constant.The behavior of the error as a function of �4



smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998According to (12), as �! 0, u = c=� converges to (CtW�1C)�1Cty, hence c = �u!0, therefore f0+ is the unique polynomial q 2 �<m that minimizes ky � �(q)k. At theother extreme, as �!1, (12) approaches the equation Cty = Ac, hence, with (10), f1�is the unique natural spline of order 2m with knots x that interpolates to the given data.As a function of �, the error E� := ky � �(f�)k2decreases with increasing �, as can be seen as follows: For each f 2 X,IR+ ! IR : � 7! �ky � �(f)k2 + k�(f)k2is a straight line, hence the functionF : IR+ ! IR : � 7! minf2X ��ky � �(f)k2 + k�(f)k2�;as the pointwise minimum of a collection of straight lines with nonnegative y-interceptsand nonnegative slopes, is continuous, nondecreasing, concave downward and is bounded(above) by its asymptote at in�nity, the constant line of height k�(f1�)k2, while theasymptote at the other extreme (i.e., the tangent at the origin) is the line through theorigin with slope ky � �(f0+)k2. Since the straight line� 7! �ky � �(f�)k2 + k�(f�)k2is the tangent to F at �, we have DF (�) = E�;showing that E� decreases with increasing � and that, correspondingly, k�(f�)k2 (they-intercept of the tangent) increases with increasing �.For this reason, Reinsch and others have proposed to choose the smoothing parameter� as small as possible subject to the constraint that E� not exceed a given tolerance, tol.Further, Reinsch has pointed out that the functionG : � 7! 1=ky � �(f�)kis concave upward and becomes ever more linear with growing �, hence Newton's methodapplied to the equation(14) 1=E1=2� � 1=(tol)1=2 = 0\tosolve for � and started at � = 0 is bound to converge, and to converge quite fast, particularly ifthe solution is `large'. Further, sinceE� = utCtW�1Cu5



smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998by (11), one getsDE� = 2utCtW�1CDu, while, from (12),Du uniquely solves the equation�Au = (CtW�1C + �A)Du:In particular, for � = 0, this says that DE� = �2utAu, with u = (CtW�1C)�1Cty neededin any case for the calculation of �(f�) via (11). This provides the slope needed for thestarting step, at � = 0, of Newton's method applied to (14). For subsequent steps, I wouldavoid calculation of DE� (which requires solution of a linear system) by using the Secantmethod instead.Another limiting case of interest concerns the con
uence of some of the xj. If thedata y come from a smooth function and the relevant weights behave appropriately, thencon
uence of r � m neighboring points leads to the smoothing problem in which � alsoinvolves all the derivatives of order < r at the multiple point and, correspondingly, f� hasonly 2m� 1� r continuous derivatives across that multiple point. Of course, the relevantformul� for such an � can be derived directly in the above way, using divided di�erenceswith repeated nodes and, correspondingly, B-splines with repeated knots, in the standardway. In particular, there is some practical use for the complete cubic smoothing spline forwhich �(f) = (Df(x1); f x; Df(xN)).Numerical construction of the B-spline Gramian There is one �nal hurdle towriting a program for the computation of f� for general m, namely the construction of thematrix A of inner products of B-splines. This is the second point at which the choice of �becomes important. With our choice of� =: N�1Xj=1 �j�(xj ::xj+1) 2 �1;xinstead of just � = 1, the calculation of the entries of A is not at all complicated since, forsmall m, the integralsAj;k = Z ba Bj;m;xBk;m;x=�; j; k = 1; : : : ; N �m;are most easily evaluated break interval by break interval anyway. To be sure, for � = 1,there are stable recurrence relations for the integrals available in the literature, e.g., in[BLS]. For the �rst few values of m, though, it is easy to work out the matrix entries, asfollows:case m = 1: In this case, Bj;m;x = �[xj ::xj+1), hence A is the diagonal matrix withdiagonal entries �xj=�j, j = 1; : : : ; N .case m = 2: In this case, Bj;m;x is the piecewise linear function that is zero at all itsbreaks x, except at xj+1, where it is 1. Correspondingly,D2f�(t) = � cj=�j for t = x+j ;cj�1=�j�1 for t = x�j .6



smooth(.tex) (as of 21sep98) TEX'ed at 10:41 on 21 September 1998Hence, with �(f�) computed from (11), construction of the local cubic pieces is immediateonce c (or c=�) is obtained from (12).Further, with t = xj + s�xj ,Z xj+1xj Bj;2(t)2 dt = �xj Z 10 s2 ds = �xj=3;whileZ xj+1xj Bj�1;2(t)Bj;2(t) dt = Z xj+1xj Bj;2(t) dt� Z xj+1xj Bj;2(t)2 dt = �xj ��xj=3 = �xj=6:Consequently, A is the tridiagonal matrix with general row(�xj�j ; 2(�xj�j + �xj+1�j+1 ); �xj+1�j+1 )=6; j = 1; : : : ; N � 2:Note that, for � = 1, the entries in such a row add up to (xj+2� xj)=2 = R Bj;2;x, exactlyas they should.case m = 3: (In spaps, I used Gauss quadrature for this case, but should replacethat by the formulas (to be) obtained here.) In this case, A is �ve-diagonal andBj;m;x(t) = ([xj+1; xj+2; xj+3]� [xj ; xj+1; xj+2])(� � t)2+:In particular, Z Bj�2;3Bj;3 = Z xj+1xj (t� xj)2(xj+1 � t)2 dt=aj ;with aj := (xj+1 � xj)(xj+2 � xj)(xj � xj+1)(xj�1 � xj+1);hence Aj�2;j = (�xj)3=(�j30(xj+1 � xj�1)(xj+2 � xj)):Next, the slightly harder calculation of R Bj�1;3Bj;3, for which it is, by symmetry, su�cientto calculate Z xj+1xj Bj�1;3Bj;3:etc. Finally, Aj;j is obtained from this by symmetry and by the fact that, necessarily,Pr Aj;r = R Bj;3 = (xj+3 � xj)=3:Following S. Kersey's good advice, the calculation of Aj�1;j in the case � = 1 mightbe better accomplished by using the formulaZ Bi;kBj;k = (�1)k (2k � 1)!(k!)2 (ti+k � ti)(tj+k � tj)[ti; : : : ; ti+k]x[tj ; : : : ; tj+h]y(x� y)2k�1+ ;which, in slightly di�erent form, appears already for that purpose in [JS].7
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