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the smoothing spline with weighted roughness measure

Carl de Boor
The smoothing spline, f = f,, of Schoenberg [S] and Reinsch [R1], [R2], uniquely
minimizes )
P wilus — S+ [ D"
j a

over all f in
X =L [a.. ),

given the points z; < --- < zy in [a.. b, the data y = (y;), the weight vector w = (w;)
of positive weights (usually equal to 1), the smoothing parameter p € [0 + ..co—], and
the natural number m, in the special case that A = 1. Over the years, this smoothing
spline, particularly after the introduction of generalized cross validation by Wahba and
777 [IcitWKI] for an automatic choice of the smoothing parameter, p, and for m = 2,
has become the spline most often used in practical problems of data fitting and analysis.
However, use of a nonconstant weight A in the roughness measure [ A(D™ f)? provides
additional, very useful, flexibility in the shaping of the smoothing spline. It is the purpose
of this note to provide a simple derivation of the numerical algorithm needed to construct
such a more complex smoothing spline, for given p and A. This derivation shows that,
for a piecewise constant A\ with breaks only at the x;, the algorithms for the case A =1
only need minor adjustments to provide this potentially very useful added capability. The
derivation is given in full, in a somewhat nonstandard way.

It seems simplest to me (and to some others, see, e.g., [A] and the references there) to
view this minimization problem as a special case of best approximation in an inner product
space, as follows: Use the linear maps

N

i B:X —Z:=Lsla..b]: f— D",

a:X—)Y::IRN:fo‘q;::(f(xj))

to embed X in the Hilbert space
H. =Y xZ

with natural inner product
<(f7 g)v (h7 k)> = p<f7 h>Y + <ga k>Z

with
<f7g>Y :Zw]fjgjv fng]R'Nv
J

b
<f,g>Z:/ Afg, f,g9 € Lafa..b].

Assuming as we do that 0 < p < oo, the only issue here is whether

X = H: [ (af),6(f))
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is an embedding and whether, with this embedding, X becomes a closed subspace of H.
For the former, it is necessary and sufficient that

ker o Nker § = {0},

and, since
kera={f€X:f|,=0}, kerf=Iy

(the space of polynomials of degree < m), this will be so iff N > m, an assumption we
make from now on. As to the latter, it is, in essence, the claim that D, hence D™, is a
closed linear map. Explicitly, I take for granted the standard representation theorem

“taylor (1) f= Ta,mf + Rﬁ(f)v VfeX,

with 15 ., f the Taylor polynomial of order m for f at a and with

R:Z—X: gl—)/ = 8)Tg(s)ds/(m — 1)L

This identifies X as the sum I, + R(Z) of a finite-dimensional linear subspace (which
therefore is closed) and the subspace R(Z) which is closed, hence X itself is closed.

Thus, the smoothing spline f, is the unique best approximation from X C H to the
element (y,0) € H, hence is characterized by the fact that the error, (y,0) — (a(f,), B(f,)),
is perpendicular to X C H, i.e.,

“orthog (2) ply — a(fo),a(f))y +(=B(f),B(f))z =0 VfeX.
Since ker 8 = Il.,,, (2) implies that
orthogy (3) (y—alfp),a(f))y =0 Vfellen
and, with this and (1), (2) implies that
“orthogz (4) ply —a(fp), a(Rg))y = (B(fp).9)z Vg€ Z

Conversely, (3)—(4) imply (2).
Since the left side of (4) is a continuous linear functional as a function of g, it is
expressible in the form (z, g)z for some z € Z. Explicitly, with h :=y — a(f,),

(y —a(fp), o(Rg) Y—Zw] / zj—8)7 g(s)ds/(m —1)!
/ (3 ushs (=9~ = D))

AZwJ zj = )7 (m = 1)z
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It follows that (4) is equivalent to

(5) prg — folz))(m; — )71/ (m = 1)l = AD™f,.

“orthogZZ

This shows that D™ f, is a spline of order m with knot sequence z, and vanishes to the
right of z. However, by (3),

ng — fola))(x; — )™/ (m 1)l = 0,

hence, with (z; — )7 = (z; — )™~ — (=1)™~L(t — z;)7 ", also

(6) ng ~ folz) (- = 2)) 7/ (m = 1)t = AD™f,,

“orthogZZZ

showing that D™ f, also vanishes to the left of z;. Consequently, AD™ f, is an element
of Sy (ie., for A =1, f, is a ‘natural’ spline of order 2m with break sequence ). In
particular, we may write

(7) /\Dmfp ZBkmmckv
“defc
with By . the normalized B-spline with knots xy, ..., Zgqm, i.e.,
Bim,w(t) = (Thtm — xk)[l"k, ey T (- — 1)
= Z rj— )Y 1ca,kv

with

- (Tpam —xk)/ [[{(xj —xi) i e{k,....,k+mP\{j}}, 1=k ..., k+m

I 0, otherwise.
Thus, on expressing AD™ f, in (5) in this way and comparing coefficients of (x; — -)T_l,
we obtain

“relationone (8) pW(y - Of(fp)) — CC

with

W := diag(w), Ci=m-1)cjr:5=1,...,N;k=1,...,.N —m),

and c the B-spline coefficient sequence for AD™ f,, as defined in (7). Now note that, for
any f € X,

(9) (Cta(f)); = (m—1)!($j+m—ﬂij)[ﬂ?ja---vxﬁm]f:/ Bjm.oD™ f.

“Cta
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“relationtwo

“equationfora

“equationforc

“choicegl
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Therefore, any a(f,) satisfying (8) automatically satisfies (3), since, for any such a(f,)
and any d € X,

(y—alfy),alf))y = o)Wy - alf,) = a(f)'Ce/p = (C'a(f))'c/p,

while Cta(f) = 0 for f € Il.,, by (9). Since (8) with (7) implies (5), hence (4), it follows
that, with (7), (8) is equivalent to (2). We therefore now concentrate on (8).
For that, from (9) with (7),

(10) Cta(f,) = Ac,

with ,
A= (/ BjmazBima:Jk=1,...,N—m).

Substitution of (8), in the form

(11) olf,) = y— W'Clc/p),
into (10) gives the equation

(12) Cly = (C'W=C + p A)(c/p)

which may be solved stably for u := ¢/p, for given data y (since its coefficient matrix
is symmetric positive definite). From this, we obtain the smoothed values «(f,) directly
from (11). To obtain f,, integrate the resulting D™ f, = (1/A) 3_; Bj,mzc; m times , to
obtain f := D~ (D™f,), which differs from f, only by some ¢ € I1,,. Determine this ¢
as the unique ¢ € I, for which a(q + f) = «a(f,), i.e., for which a(q) = a(f,) — a(f),
with the vector a(f,) computed from (11).

It is only at this point, of m-fold integration, that the choice of the weight A in the
roughness measure begins to matter (other than an assumption that A be measurable and
essentially positive, to ensure that (, )7 is an inner product). For the special case A =1,
one would use the standard formula, see, e.g., [pgs: p.150], to carry out the integration,
obtaining, in that case, f, as a natural spline of order 2m with simple interior knots
(; 4 =2,...,N —1). While the integration can be carried out in closed form for a
somewhat larger class, we will, at this point, restrict attention to those A for which f, is
still piecewise polynomial and, specifically, on the simplest of these, namely the piecewise
constants with breaks only at the x;, i.e.,

(13) A€l g

Others (e.g.,[lcit???l],[Icit???l]) have considered A that are reciprocals of continuous piece-
wise linears with breaks only at the x;), presumably in order to avoid the jumps in D™ f,
introduced when A is piecewise constant.

The behavior of the error as a function of p
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“tosolve
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According to (12), as p — 0, u = ¢/p converges to (C*W ~1C)~1C%y, hence ¢ = pu —
0, therefore foy is the unique polynomial ¢ € Il.,, that minimizes ||y — a(g)||. At the
other extreme, as p — oo, (12) approaches the equation C'y = Ac, hence, with (10), foo_
is the unique natural spline of order 2m with knots x that interpolates to the given data.
As a function of p, the error

B, = [ly — a(f,)|

decreases with increasing p, as can be seen as follows: For each f € X,

Ry = R:pe plly — a(HIP + BN

is a straight line, hence the function
F:Ry = R:p = min (plly — o) +1B)IF),

as the pointwise minimum of a collection of straight lines with nonnegative y-intercepts
and nonnegative slopes, is continuous, nondecreasing, concave downward and is bounded
(above) by its asymptote at infinity, the constant line of height [|3(f._)||?, while the
asymptote at the other extreme (i.e., the tangent at the origin) is the line through the
origin with slope ||y — a(fo+)||?. Since the straight line

p = plly — a(fo)I* + 1801

is the tangent to F' at p, we have
DF(p) = EP?

showing that E, decreases with increasing p and that, correspondingly, ||3(f,)[|* (the
y-intercept of the tangent) increases with increasing p.

For this reason, Reinsch and others have proposed to choose the smoothing parameter
p as small as possible subject to the constraint that £, not exceed a given tolerance, tol.
Further, Reinsch has pointed out that the function

G:p=1/lly—a(f)ll

is concave upward and becomes ever more linear with growing p, hence Newton’s method
applied to the equation

(14) 1/EY? —1/(tol)'? = 0

for p and started at p = 0 is bound to converge, and to converge quite fast, particularly if
the solution is ‘large’. Further, since

E, = W CTW O
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by (11), one gets DE, = 2u*C*W ~1C Du, while, from (12), Du uniquely solves the equation
—Au = (C'W™LC + pA)Du.

In particular, for p = 0, this says that DE, = —2u’ Au, with v = (C*W ~*C)~*C%y needed
in any case for the calculation of a(f,) via (11). This provides the slope needed for the
starting step, at p = 0, of Newton’s method applied to (14). For subsequent steps, I would
avoid calculation of DE, (which requires solution of a linear system) by using the Secant
method instead.

Another limiting case of interest concerns the confluence of some of the z;. If the
data y come from a smooth function and the relevant weights behave appropriately, then
confluence of r < m neighboring points leads to the smoothing problem in which « also
involves all the derivatives of order < r at the multiple point and, correspondingly, f, has
only 2m — 1 — r continuous derivatives across that multiple point. Of course, the relevant
formula for such an « can be derived directly in the above way, using divided differences
with repeated nodes and, correspondingly, B-splines with repeated knots, in the standard
way. In particular, there is some practical use for the complete cubic smoothing spline for

which a(f) = (Df(z1), |z Df(zn)).

Numerical construction of the B-spline Gramian There is one final hurdle to
writing a program for the computation of f, for general m, namely the construction of the
matrix A of inner products of B-splines. This is the second point at which the choice of A
becomes important. With our choice of

N-—-1

A= Z1 /\jX(“?j--iEHl) €.
-7:

instead of just A = 1, the calculation of the entries of A is not at all complicated since, for
small m, the integrals

b
Aj,k - / Bj,m,ka,m,w/)‘v jvk - 17"'7N_m7

are most easily evaluated break interval by break interval anyway. To be sure, for A =1,
there are stable recurrence relations for the integrals available in the literature, e.g., in
[BLS]. For the first few values of m, though, it is easy to work out the matrix entries, as
follows:

case m = 1: In this case, Bj . = X[ hence A is the diagonal matrix with

Tj-Tjt1)’
diagonal entries Az;/A;, 7 =1,...,N.
case m = 2: In this case, Bj p, , is the piecewise linear function that is zero at all its

breaks z, except at xj41, where it is 1. Correspondingly,

ci/Aj for t = 27;
Cj—l/)\j—l for t = x .

| <

D2£,(0) = {

<
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Hence, with «(f,) computed from (11), construction of the local cubic pieces is immediate
once ¢ (or ¢/p) is obtained from (12).
Further, with ¢t = z; + sAuxz;,

Tjt1 1
/ Bj»(t)*dt = Az; / s?ds = Ax;/3,
T 0

j
while
Tj+1

Tj41 Tj+1
/ Bj_lyz(t)Bj,g(t) dt = / Bjyz(t) dt —/ Bjyz(t)z dt = A.’Ej - A.I‘J/?) == AQTJ/6

i j @
Consequently, A is the tridiagonal matrix with general row

(ij (AI'J A$j+1 A$j+1
AT A A T A

)/6, j=1,...,N—2.

Note that, for A = 1, the entries in such a row add up to (242 — x;)/2 = [ Bj2 4, exactly
as they should.

case m = 3: (In spaps, I used Gauss quadrature for this case, but should replace
that by the formulas (to be) obtained here.) In this case, A is five-diagonal and

Bima(t) = (@541, %42, j13] — [0, 1541, Tj42]) (- — )3

In particular,
Tt
/Bj—z,BBj,B = / (t = xj)*(wj41 — 1)* dt/ay,
with
aj = (zjp1 — 05) (@42 — 25) (25 — wj11) (Tj-1 — Tj41),
hence
Ajag = (Azy)[(A;30(j41 — wj-1) (w2 — 25)).

Next, the slightly harder calculation of [ Bj_1 3B; 3, for which it is, by symmetry, sufficient

to calculate
Tjt1
/ Bj_13Bj3.
T

i
etc. Finally, A;; is obtained from this by symmetry and by the fact that, necessarily,

Yo Ajr = [ Bjz = (xj13 — x;)/3.
Following S. Kersey’s good advice, the calculation of A;_; ; in the case A = 1 might
be better accomplished by using the formula

2k —1)! _
/Bi,kBj,k = (_l)kW(tﬂ_k - ti)(tj-i—k — tj)[ti, cey ti-}—k]w[tj; cee tj+h]y(~T — y)ik 1,

which, in slightly different form, appears already for that purpose in [JS].
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