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Abstract—Technology constraints and application character-
istics are radically changing as we scale to the end of silicon
technology. Devices are becoming increasingly brittle, highly
varying in their properties, and error-prone, leading to a fun-
damentally unpredictable hardware substrate. Applications are
also changing, and emerging new classes of applications are
increasingly relying on probabilistic methods. They have an
inherent tolerance for uncertaintyand can tolerate hardware
errors.

This paper explores this synergy between application error
tolerance and hardware uncertainity. Our key insight is to expose
device-level errors up the system stack instead of masking them.
Using a compiler instrumentation-based fault-injection method-
ology, we study the behavior of a set of PARSEC benchmarks
under different error rates. Our methodology allows us to run
programs to completion, and we quantitatively measure quality
degradation in the programs’ output using application-specific
quality metrics. Our results show that many applications have
a high tolerance to errors. Injecting errors into individual static
instructions at rates of 1% and higher, we find that between 70%
to 95% of those instructions cause only minimal degradation in
the quality of the program’s output. Based on a detailed analysis
of these programs, we propose light-weight application-agnostic
mechanisms in hardware to mitigate the impact of errors.

I. I NTRODUCTION

Advances in semiconductor manufacturing technology have
enabled consistent, progressive reductions in the size of on-
chip devices, resulting in exponential growth in the number
and speed of devices on chip and the overall performance
of microprocessors. Through the next decade and until the
end of CMOS technology this device scaling is expected to
continue. However, the underlying properties of these devices
are radically changing, and we are entering an era of non-
ideal process scaling and unpredictable silicon technology
which is causing disruptive changes at many layers of the
microelectronics system stack [3], [14]. Currently computer
systems are designed assuming perfection at many levels,
from devices, through CAD, the microarchitecture-level and
ISA. Driven by scaling, however, device-level permanent and
transient errors, aging, and variability become first order con-
straints [15]. In the future, it may be too hard to maintain this
illusion of perfection. The model of hardware being correct
all the time, on all regions of chip, and forevermay become
prohibitively expensive to maintain. The technology-driven
question that follows this observation is:how can we build
working hardware from unpredictable silicon?

New classes of high-performance applications are emerging
that are dominated by probabilistic algorithms used for image
recognition, video search, text and data mining, modeling
virtual worlds, and games [6], [16]. Many of these applications
sharean inherent ability to tolerate uncertaintyand provide an
opportunity to creatively utilize hardware. While they require
large computational capability, they provide the possibility that
hardware does not have to be always correct. Hence, the key
application-driven questions are: (1)can these applications
indeed tolerate hardware uncertaintyand (2) how can we
efficiently support the massive computation needs of these
emerging applications?

A rich body of literature has focused on building a fault-
free machine abstraction model and implementation in the
presence of device errors [13]. In contrast, we observe that
emerging applications are inherently tolerant of errors and
are algorithmically designed to operate on noisy data. We
make a big departure from prior work and treat hardware
errors that create computation errors as effectively rendering
the input data noisy. Our work is motivated by the insight that
exposing device errors through the system stack can become
more efficient than masking these errors when devices become
highly unpredictable. The cross-over point when masking
become less efficient than exposing is open to question and
is highly dependent on technology constraints. Figure 1a
illustrates the trade-off. This work attempts to explore an
architecture space where hardware is allowed to execute with
errors and these errors are simply exposed to applications and
the system, allowing for higher level software decisions on
managingthese errors. While error rates are manageable today,
non-ideal process scaling is likely to increase error rates and
hence now is the time to explore such a design space. In
this paper, we motivate the need for such an abstraction by
outlining technology trends and application trends, focusing
on the synergy between them.

We present a comprehensive analysis and characterization
of emerging workloads and attempt to quantify their toler-
ance to errors. We analyze a set of PARSEC benchmarks
(x264, bodytrack, canneal, streamcluster, swaptions) [2] and
a futuristic realtime ray-tracer called Razor [5], [11]. We use
a LLVM-based [9] toolchain to probabilistically inject errors
into applications and run full applications on real hardware.
We also develop application-specific quality functions that
measure how an application’s output degrades due to hard-



Fig. 1. The balance of masking vs. exposing errors in hardware.

ware errors. Our results show that between 70% to 95% of
individual static instructions cause only minimal degradation
in application output when injected with errors at rates of 1%
and higher.

Application error tolerance points to several promising
directions for architecture and device-level evolution. First, it
presents an opportunity for building approximate microarchi-
tectures that are designed for the common case. Second, at
the device level, it expands the opportunity for incremental
integration of energy-efficient analog designs. Third and more
generally, allowing hardware errors can enable simplification
of the overall microprocessor design process by relaxing CAD
design rules, relaxing timing constraints, freeing from worst
case design, and reducing foundry design rules.

The contributions of this work are:
• A scalable non-intrusive methodology to study the be-

havior of full applications on error-prone hardware using
commodity multicore hardware.

• A detailed characterization of the tolerance to hardware
errors in emerging applications.

• Simple architectural models to implement light-weight
error mitigation.

The remainder of this paper is organized as follows. Sec-
tion II discusses our methodology. Section III presents our ap-
plication characterization. Section IV presents our architectural
models for error mitigation. Section V discusses related work.
Finally, Section VI concludes with implications for future
systems.

II. EXPERIMENTAL METHODOLOGY

We simulate our applications through compiler instrumenta-
tion, using the LLVM compiler infrastructure [9]. The LLVM
IR (Intermediary Representation) doubles as a RISC-like vir-
tual ISA, and we assume a hardware machine model derived
from this ISA. Our behavioral modifications are implemented
through a set of compiler-based transformations that operate
on the LLVM IR. In particular, we enable fault injection by
inserting a conditional branch before each instruction. The
branch direction is decided based on the failure probability
for that instruction. On failure, a code path that contains
that instruction’s failure semantic is executed. Otherwise, the
original instruction is executed. In both cases, control-flow
merges back to the original code path.

Our approach to fault injection is significantly different from
the traditional simulator-based approach, and has the following
benefits and limitations:

1) Simulation speed is extremely fast:Instrumented appli-
cations run fast. Application slowdown is never more
than 10x and is frequently in the range of 1-2x.

2) Simulation results are architecture-agnostic:Each
LLVM instruction type is easily mapped to a particular
hardware function and it is straightforward to generalize
results to other hardware architectures.

3) Parallelism and multi-core hardware:Our infrastruc-
ture directly supports multi-threaded applications and
is independent of the specific mechanisms used for
parallelization.

4) Simulations have no hardware visibility:Speed and
flexibility comes at a sacrifice to circuit- and
microarchitecture-level precision.

5) All source code is required:A limitation is that source
code is required for all regions of interest.

A. Failure Instrumentation and Analysis

The applications we analyze are listed in Table I. For
each of these applications, we perform two sets of automated
analyses: one analysis,instruction-local analysis, looks at
the failure behavior of individual static instructions, and the
second analysis,whole-program analysis, looks at the failure
behavior of groups of dynamic instruction executions. Finally,
through manual code inspection we apply the data from these
analyses to infer high-level conclusions about the application
as a whole.

Instruction-local analysis: We analyze all instructions that
constitute the top 95% of program execution time (counts are
shown in column 5 of Table I), and sample the instructions
that constitute the remaining 5%. We look at specific LLVM
instruction types, namely: arithmetic, logical, compare, cast,
branch, select, load, store, and getelementptr (a LLVM-specific
instruction for indexing data structures). We label program
crashes and timeoutsfailures. For non-failure executions, we
feed the application output to an application-specificevalua-
tion function, which produces a quality-metric that assesses
the quality of the output relative to fault-free output. This
quality metric is normalized to a scale of 0 to 100 for all
applications, where 100 represents no degradation in quality
(shown in column 7 of Table I).

Whole-program analysis: Here, we group non-failing
static instructions together for simultaneous fault-injection. We
ran experiments grouping all functional, memory, and control
instructions together.

B. Failure Models

In our experiments, we explore two different models:bit-
flip and assisted. A failure for an instruction under the bit-
flip model causes a random output bit to flip from 0 to 1
or vice versa, while the assisted model assumes a best-effort
attempt by the hardware to minimize failure by ensuring a
deterministic failure semantic. To give two examples, under



(a) adapted from Weaver et. al [17] (b) adapted from SWAT [10]

Fig. 2. This work in the context of other work.

Application Description Input Instruction count Evaluation metric
Dynamic Static Top 95% Static

x264 Video encoding simlarge 457 Bil 39788 853 change in PSNR relative to
raw input

razor Real-time raytracing [8], [5] courtyard 235 Bil 59760 15707 PSNR relative to fault-free
output

bodytrack Motion tracking in 3D space simlarge 14.3 Bil 7274 1378 change in body pose coor-
dinates

streamcluster Clustering in n-dimensional space simlarge 48.3 Bil 1539 12 change in sum of squared
distances

canneal Simulated annealing simlarge 3.11 Bil 573 303 change in numeric output
swaptions Monte Carlo-based partial differential

equation solver
simlarge 11.2 Bil 735 187 change in numeric output

TABLE I
OUR SIX APPLICATIONS, THEIR SIZE IN TERMS OF STATIC AND DYNAMIC INSTRUCTIONS, AND THE OUTPUTS OF THEIR EVALUATION FUNCTIONS.

the assisted model a failed add outputs the first operand and
a failed load outputs zero.

In the context of prior work, many previous studies have
examined hardware errors using microarchitecture-level and
RTL-level studies focusing on fault models targeted at levels
below the ISA. Our study is unique in that it focuses on
ISA-level fault analysis. We concluded that injecting faults at
this level was sufficiently accurate since multiple simultaneous
bitflips caused qualitatively the same types of application-level
behavior. As a result, many device-level fault models including
stuck-at faults, bridging faults, and timing faults are simply
captured by our bit-flip model.

Figure 2a places our work in the context of basic definitions
of fault injections. The focus of this study is silent data
corruption and detected unrecoverable errors which have small
or no effect on the output of an application. Figure 2b shows
the coverage of this work in the context of the SWAT work
which is the closest related [10]. Their system assumptions
are driven from a different perspective of attempting to build
near-perfect hardware, while we assume the opposite.

III. A PPLICATION ANALYSIS

This section presents our application analysis. We take x264
as a case study and examine its error tolerance behavior in
detail while making several key observations which apply to
all our application. We provide an analysis of all applications

in the Appendix.
Bit-flip model: Figure 3a shows the quality output on the

left and percentage of instructions causing failure (crashes or
timeouts) on the right assuming the bit-flip failure model,
broken down by instruction type.Observation 1:This data
confirms that bit-flips are often catastrophic and software-only
recovery implies frequent intervention.

Assisted model:Figure 3b shows the quality output and
instructions causing failure assuming the assisted model. It
shows that there are substantially fewer failures. Interestingly,
over 99% of arithmetic instructions result in no failures, and
reduce program quality by no more than a PSNR (Peak Signal
to Noise Ratio) difference of 20.Observation 2:Light-weight
assistance from hardware can dramatically improve the safe
execution of error-tolerant application regions.

As shown by the detailed breakdown of instructions by
their execution frequency in the right column of Figure 3c,
failure instructions tend to be those that are less-frequently
executed.Observation 3:Most of the frequently executing
instructions are tolerant to errors with few program failures
and little reduction in program quality.

Whole-program analysis: As shown in Figure 3d, when
multiple instructions are allowed to fail independent of each
other, programs have little tolerance to control-flow errors.
On the other hand, none of the memory or functional unit
instructions, even in the presence of errors, cause failures
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(a) bit-flip model – instruction-local instruction type: quality and failure analysis at 1% failure rate
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(b) assisted model – instruction-local instruction type: quality and failure analysis at 1% failure rate
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(c) assisted model – instruction-local execution frequency percentile: quality and failure analysis at 1% failure rate
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(d) assisted model – whole-program injection: quality and failure analysis varying the rate of failure

Fig. 3. Graphs showing fault injection data for x264.

in combination. Furthermore, at very low error rates, they
continue to have a small effect on quality.Observation 4:
Non-control flow instructions are highly tolerant to failures
on error prone hardware and do not require strong correctness
guarantees.

Code inspection: By mapping the individual failing in-
structions back to source code, we observed that the number of
those instructions in the hot region of the code is quite small.
Observation 5:If static or dynamic code profiling techniques
can identify instructions with a high probability of causing
failure, targeted heavy-weight techniques can be applied to
just these instructions.

Examining the application code, we found that arithmetic,
select, logic, and store instructions were the most tolerant.
Arithmetic instructions are heavily used to compute the sum
of absolute differences between macroblocks, which is an
extremely error tolerant computation. All select instructions
are also used in this computation, to take the absolute value,
i.e. they conditionally move a value or its negative. They
are tolerant for the same reason. Logic instructions include
shifts for averaging, which are highly tolerant. Shifts and ORs
are sometimes used to manipulate pointer indices as well,
for which they are less tolerant, and can sometimes cause a
protection violation. Finally, most store instructions write data
to intermediary pixel block structures used in a part of the

application called motion estimation. In general, silent stores
are preferable to outright data corruption for these structures.

We found conditional branch, compare, and load instruc-
tions to be the least tolerant instruction types. Virtually all
conditional branch instructions are looping branches. When
these loops overflow, the program often crashes due to a
bounds violation. Compare instructions are used to direct
conditional branch and select instructions. Hence, the impact
of failing compare instructions correlates well with these
instructions. Finally, load instructions are biased by their heavy
use in the sub-pixel refinement motion estimation code, in
which failures have a relatively high impact on quality.

A. Results in Context

Our error injection analysis with the bit-flip model showed
that when executing full applications, the bit flip model is
too restrictive, even for the most error-tolerant applications.
More than 40% of the static instructions caused program
failure. While these results may seem a little counter-intuitive
or appear to contradict previous results, these are indeed
consistent when placed in context. For instance, our error
injection at a 0.0001% probability injects 450000 errors for
one execution run for x264, executing the application to com-
pletion. Other studies have focused on a handful of single bit-
flips in hardware structures and the effect on a relatively short



phase of the program.Our study provides a comprehensive
analysis of what future error prone hardware may look
like and attempts to study how unmodified software will
perform in such an environment.

IV. A RCHITECTURAL MODELS

In this section, we propose simple architectural models and
associated abstractions and mechanisms to enable efficient
hardware.

Assisted model:Architectures that implement this model
can execute with errors, but must detect when errors occur
and correct errors to a relatively simple default. The pipeline
implementation of the assisted model requires the propagation
of errors detected through every pipeline stage. The basic idea
is that errors can occur anywhere in the pipeline, but must
be detected and some meaningful output must be committed
to the architecture state. This model can be implemented
using several existing mechanisms: Razor [7], DIVA [1], and
Argus [12]. Across all instruction types, this assisted hardware
model reduces the number of failure instructions by 2X to
10X.

Assisted memory model: The assisted model only has
a local, instruction-granularity view of errors and does not
propagate error information to dependent instructions. As
a result, even with the assisted model a large number of
instructions cause failures. The main cause of these failures
is illegal memory accesses and control-flow violations. These
failures come about because an instruction that is affected by
hardware errors will “safely” execute with the assisted model,
but its results are not guaranteed to cause safe execution of
dependent instructions. For example, a load that is dependent
on a load that executed with an error, will receive as its input
0 and will invariably cause a protection violation. The assisted
memory model attempts to provide for this case by including
a poison bit with every register and memory location. This
poison bit is propagated with each instruction execution. With
the assisted memory model, stores and loads are preventing
from causing a memory access violation; they default to silent
stores and return zero, respectively, if the address operand is
poisoned.

Assisted memory & control flow model: A third model,
we call the assisted memory & control flow model, adds
support for control flow recovery, by terminating functions
any time a poison bit propagates to a branch instruction, as
this means potentially faulty control flow. Our preliminary
design for this model is for the function to immediately return
when this happens and re-execute the function. A hardware
implementation of this model adds moderate complexity to
the processor pipeline.

V. RELATED WORK OVERVIEW

Mukherjee presents a good overview of device reliability
and its interaction with the architecture and microarchitec-
ture [13]. Finally, Bruer and Gupta have proposed the pure
hardware analog of this work, an idea they call intelligible test-
ing, which certifies ASIC chips to be partially correct [4]. The

software-hardware co-designed resilient system design [10]
is the most closely related effort to our approach to allow
errors in hardware. Their research attacks the slightly different
problem of resilient system design with high-level detection
mechanisms.

VI. SUMMARY AND IMPLICATIONS

Our core findings are that 1) emerging applications have
a very high level of local instruction-level error tolerance, 2)
with no error detection at all (i.e. assuming the bit-flip failure
model) applications are highly prone to failure, 3) simple light-
weight error detection that enforces a deterministic failure
semantic significantly enhances failure tolerance and provides
high-quality execution, and 4) when errors are injected at a
whole program scale, error tolerance drops but is still high.

We believe exposing hardware errors to applications can
trigger ISA specialization similar to short-vector extensions
that specialized ISAs for multimedia computation. Following
this, a well-defined model of the probabilistic guarantees that
hardware provides for correctness can allow development of
tailored software with high quality guarantees. Our assisted
models are a start in the direction of specifying such a model
for hardware uncertainty. These models can trigger detailed
exploration at the microarchitecture and device level to exploit
opportunities for efficiency.

Finally, the growing synergy between device-level unpre-
dictability and application error tolerance can enable innova-
tions in applications. Exposing hardware errors will help build
application-specific error recovery mechanisms that are likely
to be even more effective than general-purpose architecture
mechanisms.
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APPENDIX

In this section, we examine common behavior across ap-
plications, followed by a brief summary for each of the
applications. Our experiments examine error tolerance for
failure rates of 1% for instruction-local analysis and 0.0001%
for whole-program analysis.

A. Common Behavior Across Applications

First, all applications behave similarly under thebit-flip
model’s semantics. Also, the light-weight assisted semantics
are effective at reducing failures when injecting errors in
individual static instructions.

Second, there is little correlation in general between the
frequency that instructions execute and both their qualitative
impact and their likelihood to cause program failure. This
appears counter-intuitive because we would expect instructions
that execute more frequently to have more opportunity to
degrade program quality or cause outright failure. However,
instructions that execute more frequently are also more likely
to be data-intensive and not involved in control-intensive
program setup or orchestration, improving their error tolerants.
Our results show that these two aspects tend to balance each
other out for most applications.

Finally, most programs respond better to simultaneous func-
tional and memory instruction injections than simultaneous
control injections. When instrumenting all functional and
memory instructions, we almost never saw any “emergent
failure” arise due to the multiple instruction injections. How-
ever, for control instructions, we did see this phenomenon
of emergent failure for many applications including x264,
bodytrack, and streamcluster.

B. Other Applications

streamcluster and canneal:Both streamcluster and canneal
are highly tolerant to errors injected in all instruction types.
For canneal, this is because the simulated annealing algorithm
is incremental, inherently noisy, and has built-in redundancy.
Streamcluster has similar qualities, although it has less in-
herent noise. Over 95% of streamclusters dynamic instruction

executions occur inside of a 12 instruction basic block that
performs a squared distance calculation between two values.
The incremental contributions of each individual calculation
are so minor that occasional errors are extremely tolerable.

Razor: Razor also shows promising results. One large basic
block that is particularly tolerant computes distances between
multiple rays using differential equations. Errors in these
calculations due to failure in one of the instructions in the
basic block results in only minor qualitative degradation. We
note that Razor exhibits highly non-deterministic and scene-
dependent error tolerance; tolerant instructions are intermin-
gled with intolerant ones in a manner that is not statically
identifiable.

bodytrack: For bodytrack, our results are generally favor-
able. Two functions that perform linear algebra computations
and process the body geometry data are critical to the correct-
ness of the algorithm, but other regions are almost completely
error tolerant due to the inherent noise and redundancy in the
tracking algorithm.

swaptions: Swaptions is the least tolerant of all the ap-
plications we investigated. Swaptions employs Monte Carlo
simulation, and most of the execution time is spent in random
number generation. In general, it appears that the quality of the
random path is critical to the overall quality of the simulation.


