
Agnostic Active Learning Notes
Kevin Jamieson
November 26, 2010

Agnostic learning is one of those most general learning settings in which little or no assumptions are made
about the true underlying function. Some even extend this definition to adversarial noise but we assume we
are streamed an iid sample from some unknown joint distribution over X × {−1, 1}.

The algorithm and proofs closely follow Dasgupta, Hsu, and Monteleoni’s paper: A General Agnostic Active
Learning Algorithm.

Definition 1. For a hypothesis class H and dataset {(xi, yi)}ni=1 where xi ∈ X and yi ∈ {−1, 1} we call ĥ

the empirical risk minimizer if ĥ = arg minh∈H errn(h) where

errn(h) =
1

n

n∑
i=1

1{h(xi) 6= yi}

Definition 2. If a finite dataset is identically and independently distributed from some distribution, that is,
{(xi, yi)}ni=1 ∼ DX,Y then the true risk of a hypothesis h ∈ H is denoted

errD(h) = P (h(X) 6= Y) =

∫
X

1{h(X) 6= Y }dP (X)

Definition 3. After observing n examples we call the set of all hypotheses still “in the running” to be the
true risk minimizer the version space and denote it Vn ⊂ H.

We define the version space for the agnostic setting to be those hypotheses that we cannot reject as being
the minimum risk classifier with high probability. More formally, if f = arg infh∈H errD(h) and errD(f) = ν
then for some confidence δ > 0:

Vn = {h ∈ H : P (errD(h) > ν) ≤ δ}

for all n ∈ N. It follows that with probability > 1− δ, f ∈ Vn.

Theorem 1. Vapnik (1971) For a hypothesis class H with finite VC dimension d, αn =
√

4d log 2n+4 log(8/δ)
n ,

and an iid sample {(xi, yi)}ni=1 from DX,Y then for all h ∈ H with probability greater than 1− δ

−min

{
αn
√

errn(h), α2
n + αn

√
errD(h)

}
≤ errD(h)− errn(h) ≤ min

{
α2
n + αn

√
errn(h), αn

√
errD(h)

}
.

Note that the above theorem can be more useful than a bound on just | errD(h)− errn(h)|.

Lemma 1. Dasgupta (2007) For a hypothesis class H with finite VC dimension d, βn =
√

8d log 2n+4 log(8(n2+n)/δ)
n ,

and an iid sample {(xi, yi)}ni=1 from DX,Y then for all h, h′ ∈ H with probability greater than 1− δ

errn(h)− errn(h′) ≤ errD(h)− errD(h′) + β2
n + βn(

√
errn(h) +

√
errn(h′)).

If for some h, h′ ∈ H, errn(h)− errn(h′) > ∆n then errD(h) > errD(h′) where

∆n = β2
n + βn(

√
errn(h) +

√
errn(h′)). (1)

This inequality is novel in itself and may be very useful in maintaining a version space.

Definition 4. For some hypothesis class H and set X where for h ∈ H, h : X → {−1, 1}, the region of
disagreement is defined as

DIS(H) = {x ∈ X : ∃h, h′ ∈ H s.t. h(x) 6= h′(x)}.

1

Definition 5. For some hypothesis class H and the marginal DX of DX,Y the closed ball centered at h ∈ H
with radius r is defined as

B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r}.

where ρ(h, h′) = PX∼D(h(X) 6= h′(X)).

Definition 6. The disagreement coefficient θf = θ(H,DX,Y , ε) of f ∈ H with respect to H and DX,Y is

θf = sup
ε>0

P (DIS(B(f, ν + ε)))

ν + ε
.

Algorithm 1.
Input: stream (x1, x2, . . . , xm) iid from DX
Initially, Ŝ0 = ∅ and T0 = ∅
For n = 1, 2, . . . ,m :

1. For each ŷ ∈ {±1}, let hŷ = LEARNH(Ŝn−1 ∪ {(xn, ŷ)}, Tn−1).

2. If errn(h−ŷ) − errn(hŷ) > ∆n−1 (or if no such h−ŷ is found) for some ŷ ∈ {±1}, then Ŝn = Ŝn−1 ∪
{(xn, ŷ)} and Tn = Tn−1.

3. Else request yn; Ŝn = Ŝn−1 and Tn = Tn−1 ∪ {(xn, yn)}.

where LEARNH(Ŝn−1 ∪ {(xn, ŷ)}, Tn−1) is a subroutine that learns a classifier that is consistent with its
first argument and achieves minimum risk on its second argument.

Observation 1. In the above LEARN(Ŝ, T) subroutine, Ŝ include imputed labels determined by the algo-
rithm that need not equal the true labels in S. If êrrn h denotes the empirical error on Ŝ ∪ T and errn(h) is
the empirical error on S ∪ T then for any two hypotheses h, h′ ∈ Vn

êrrn(h)− êrrn(h′) = errn(h)− errn(h′). (2)

It then follows that we can replace all errn(h) terms with êrrn(h) terms in Lemma 1.

Lemma 2. If Algorithm 1 is streamed an iid sample {(xi, yi)}ni=1 from DX,Y and f = arg infh∈H errD(h)

then with probability greater than 1− δ f ∈ Vn and f is consistent with Ŝn.

Proof. Suppose we are given some xn and we find êrrn(h+1)− êrrn(h−1) > ∆n. We would then add (xn,−1)
to Ŝn without requesting a label and move on. We will now show f(xn) = −1.

Suppose not. Then f(xn) = +1 and because h+1 is the empirical risk minimizer over Ŝn∪Tn by construction,
êrrn(f) ≥ êrrn(h+1). Recalling that êrrn(h+1)− êrrn(h−1) > β2

n + βn(
√

êrrn(h) +
√

êrrn(h′)) we see

êrrn(f)− êrrn(h−1) = êrrn(f)− êrrn(h+1) + êrrn(h+1)− êrrn(h−1)

>
√

êrrn(h+1)[
√

êrrn(f)−
√

êrrn(h+1)] + ∆n

> βn[
√

êrrn(f)−
√

êrrn(h+1)] + β2
n + βn[

√
êrrn(h+1)−

√
êrrn(h−1)]

= β2
n + βn[

√
êrrn(hf) +

√
êrrn(h−1)]

but this implies errD(f) > errD(h−1) by Lemma 1, which is a contradiction.

Theorem 2. If Algorithm 1 is streamed an iid sample {(xi, yi)}ni=1 from DX,Y , f = arg infh∈H errD(h) and

errD(f) = ν, and ĥ = arg minh∈H êrrn(h) then with probability greater than 1− δ

errD(ĥ) ≤ ν +
24d log 2n+ 12 log(8(n2 + n)/δ)

n
+
√
ν

√
32d log 2n+ 16 log(8(n2 + n)/δ)

n
.

2

Proof. We use Theorem 1, the fact that êrrn(ĥ) ≤ êrrn(f), and αn ≤ βn to see

errD(ĥ) ≤ êrrn(ĥ)− êrrn(f) + ν + β2
n + βn

√
errD(ĥ) + βn

√
ν

≤ ν + β2
n + βn

√
errD(ĥ) + βn

√
ν

≤ ν + 3β2
n + 2βn

√
ν

where the last line comes from the inequality:

A ≤ B + C
√
A =⇒ A ≤ B + C2 + C

√
B

for non-negative A,B,C.

In the realizable setting our strategy was to find the number of labels required to achieve an ε excess risk.
In this agnostic case, we determine the number of unlabeled examples necessary to achieve a certain ε and
then determine the expected number of labels requested.

Suppose f = arg infh∈H errD(h) and f(xn) = −1. Then a label is requested if êrrn(h+1) − êrrn(h−1) >

β2
n + βn(

√
êrrn(h) +

√
êrrn(h′)). How small does errD(h+1) have to be to cause this event to occur and how

likely is that to happen as n gets big? How does this relate to the disagreement coefficient? This leads us to
our next two lemmas.

Lemma 3. Let f = arg infh∈H errD(h), errD(f) = ν, f(xn+1) = ŷ, and yn+1 is requested. Then with
probability ≥ 1− 2δ

errD(h−ŷ) ≤ 3ν + (12 + 2
√

3)β2
n

and for some c1, c2 > 0

P (Request yn+1) ≤ P (DIS(B(f, (c1 + 1)ν + c2β
2
n)))

Proof. The first part is proved by pushing inequalities around and isn’t very instructive. For the second
part, define h̃ to be the Bayes decision boundary so that with metric ρ from Definition 5 we see that for any
h ∈ H ρ(h̃, h) ≤ errD(h)− errD(h̃) ≤ errD(h). It then follows that

ρ(h−ŷ, f) ≤ ρ(h−ŷ, h̃) + ρ(h̃, f)

≤ errD(h−ŷ) + errD(f)

= errD(h−ŷ) + ν.

Lemma 4. With the same conditions of Lemma 3, there exists a constant c > 0 such that

P (Request yn+1) ≤ c · θf (ν + β2
n)

where θf = θ(D,H, εn) and εn = 3β2
n + 2βn

√
ν, the achievable excess risk with n examples.

Proof. We can choose constants c1, c2 > 0 such that c1ν + c2β
2
n ≥ 3β2

n + 2βn
√
ν. We then find

P (Request yn+1)

(c1 + 1)ν + c2β2
n

≤ P (DIS(B(f, (c1 + 1)ν + c2β
2
n)))

(c1 + 1)ν + c2β2
n

≤ sup
ε≥εn

P (DIS(B(f, ν + ε)))

ν + ε

= θf

which implies

P (Request yn+1) ≤ θf · ((c1 + 1)ν + c2β
2
n)

≤ c · θf (ν + β2
n)

for some c > 0.

3

Theorem 3. If Algorithm 1 is provided n = Õ(θfd
ν+ε
ε2)1unlabeled examples from D then with probability

≥ 1 − δ a classifier is returned with risk at most ν + ε. Furthermore, if Lε denotes the expected number of
labels requested

Lε =

{
Õ
(
θfd log2(1/ε)

)
, if ε ≈ ν

Õ
(
θfd [log2(1/ε) + (ν/ε)2]

)
, if ε� ν

Proof. The number of unlabeled data is found by solving for n from the risk bound in Theorem 2. To bound
the number of expected labels:

Lε = E

[n∑
t=1

1{Request yt}
]

=

n∑
t=1

P (Request yt)

≤
n∑
t=1

c · θf (ν + β2
t).

Suppose ν ≤ εn = 3β2
n + 2βn

√
ν then by the inequality in the proof of Theorem 2, ν ≤ (7 + 2

√
3)β2

n and

Lε ≤
n∑
t=1

c · θf
(
(7 + 2

√
3)β2

n + β2
t

)
≤ c · θf

(
(7 + 2

√
3)β2

nn+

n∑
t=1

β2
t

)
= O

(
θf
(
d log2 n+ log(1/δ) log n

))
= O

(
θfd log2(1/ε) + θf log(1/δ) log(1/ε)

)
.

The other proof is straightforward.

Things to consider

• We know P (Request yt) ≤ c · θf (ν + β2
t) for c > 1 but what if θf · ν > 1?

• What is the computational complexity of Algorithm 1?

• Known lower bounds?

1Õ(f) ignores any constants, log(1/δ), or log(log(1/ε)) factors

4

