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Definition 1. For a hypothesis class H and dataset {(x;,y;)}7—, where z; € X and y; € {—1,1} we call h
the empirical risk minimizer if h = arg min,c,, R(h) where

n

R(h) = L{h(z:) # yi}

i=1

Definition 2. If a finite dataset is identically and independently distributed from some distribution, that is,
{(zi,¥:)}P=1 ~ Dx.y then the true risk of a hypothesis h € H is denoted

R(1) = PX) #Y) = [ 1{n(X) # Y}P(x)

Definition 3. After observing n labels we call the set of all hypotheses still “in the running” for being the em-
pirical risk minimizer over all observed data the version space and denote it V,, C H. If f = argminy o4, R(h)
and R(f) =0 then

Vo, ={heH:R(h) =0}

and f €V, for alln € N.

Theorem 1. Vapnik (1982) For a hypothesis class H with finite VC dimension d and an iid sample
{(@i,y:)}i=y from Dxy with f = argminy,cy, R(h) and R(f) = 0 then with probability greater than 1 — 6
4dlog 2%" + log %

sup R(h) <
hev, n

Definition 4. For some hypothesis class H and set X where for h € H, h : X — {—1,1}, the region of
disagreement is defined as

DIS(H)={zx € X :3h,h € H s.t. h(z) # h'(z)}.

Observation 1. Assume f = argmin,cy R(h) and R(f) = 0. If after n labeled examples we observe an
X ¢ DIS(V,,) then we need not ask for its label because no two hypotheses in V,, disagree on its label and
because f €V, its label is deterministic.

Definition 5. For some hypothesis class H and the marginal Dx of Dx y the closed ball centered at h € H
with radius r is defined as

B(h,r) = {W € H : Pxp(h(X) # }'(X)) < r}.

Definition 6. The disagreement coefficient of h € H with respect to H and Dx y is
b P(DIS(B(h,T)))

r r

Oy =

Lemma 1. If f = argmin, 4, R(h) and R(f) = 0 then after n labeled examples there is a nonempty subset
Vi CH st Vi, ={heH:R(h) =0} and if we simulate samples x ~ Dx requesting labels only when
x € DIS(V,,) then with probability greater than 1 — 6/n after at most A, = 40¢(4dlog(15e85) + log(2n/9))
label requests

1
sup R(h) < sup —R(h)
heVm heVy,

for some m >n+ \,.



Proof. The disagreement coeflicient allows for a bound that relates the region of disagreement to the true
risk of any h € V,,:

P(DIS(Vy)) P(DIS(B(f,supyev, R(h))))

supyey, R(h) supyey, R(h)
b P(DIS(B(f,7)))

<
T r
which implies
P(DIS(V,
PIDISWVa)) o Rn) ()
Gf heV,
and there exists some m > n such that
sup R(h) < sup R(h(X)|X € DIS(V,,))P(DIS(V,,)) (2)
eV, hEVi,
4dlog 2= + log 2
< SRR P(DIS(Y,) ®
< P(DIS(V,)) (4)
205
< sup L(h) (5)
hev, 2

where (2) follows from Observation 1, (3) and (4) follow from Theorem 1 and the definition of A,, and finally
(5) follows from (1). O

Theorem 2. Under the same setting and assumptions of Lemma 1, for any t € N with probability greater
than 1 — 9§ the true risk of h after t label requests satisfies

A t
R(h)<2- el‘p{ 607 (4dlog(446 ;) + log(2t/d)) }

Proof. Lemma 1 says that after just A; labeled examples we have sup,cy, ., R(h) < supjcy, R(h)/2 with
probability greater than 1 — §/t. So after ¢ > A;[logy(1/€)| labeled examples sup; ey, R(h) < e with
probability greater than 1 — § by taking a union bound over n = Ay, 2X, ..., [t/A¢]. Solving for € in terms
of t gives the result. O

Some disagreement coefficients

With the exception of very nice situations (uniform distribution, symmetric geometry, etc) the disagreement
coeflicient is often impossible to calculate. However, Theorem 2 shows that 6 just needs to be finite to learn
with O(log(1/e)) labels and this is often done in the literature.

e Thresholds on R: 6 =2
e Homogeneous hyperplanes in R? with data uniformly distributed on a sphere: 6 < v/d
e General hyperplanes in R? with the data density bounded below: 6 = O(d)

e Intervals [a,b] on R: 6§ = oo



