
Week 1: Introduction to Online Learning

1 Introduction

This is written based on Prediction, Learning, and Games (ISBN: 0521841089 / 0-521-84108-9)
Cesa-Bianchi, Nicolo; Lugosi, Gabor

1.1 A Gentle Start

Consider the problem of predicting an unknown sequence y1, y2, ... of bits yt ∈ {0, 1}. At each time
t the forecaster first makes his guess p̂t ∈ {0, 1} for yt. Then the true bit yt is revealed and the
forecaster finds out whether his prediction was correct. To compute p̂t the forecaster listens to the
advice of N experts. This advice takes the form of a binary vector (f1,t, ..., fN,t), where fi,t ∈ {0, 1}
is the prediction that expert i makes for the next bit yt.

Goal Bound the number of time steps t in which p̂t 6= yt, that is, to bound the number of mistakes
made by the forecaster.

1.1.1 If we know ’god’ exist among experts

If there is an expert that predicts yt 100% correctly, you can define a forecaster (algorithm) that
makes at most blog2Nc mistakes.

Algorithm Do majority vote using experts that haven’t made any mistakes yet.
1. Set t = 1. Define wk = 1 for experts k = 1..N .
2. Predict p̂t = 1 if weighted average of f1,t, .., fN,t is greater than 1/2, 0 otherwise.
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3. yt reveals. Set wk ← 0 for those experts who made a mistake.
4. Increase t← t+ 1 Go to 2.

Proof m: #mistakes that forecaster have made so far.
wk ∈ {0, 1}: weight for expert k.
Wm : Sum of weights of experts after making m mistakes.

1.1.2 If we don’t know anything about experts?

Let’s come up with a simple idea and bound the performance.

Algorithm Redefine wk ∈ [0, 1]. We do weighted majority vote with weight updates. At each
round, apply wk ← βwk for all experts who made a mistake (β ∈ (0, 1)).

1. Set t = 1. Define wk = 1 for experts k = 1..N .
2. Predict p̂t = 1 if weighted average of f1,t, .., fN,t is greater than 1/2, 0 otherwise.
3. yt reveals. Set wk ← βwk for those experts who made a mistake.
4. Increase t← t+ 1 Go to 2.

Analysis and Bound Consider we are at some time step where the forecaster made his m’th
mistake.
k: expert index with the fewest mistakes so far.
m∗: mistakes made by expert k.

m ≤

⌊
logN +m∗ log( 1

β )

log 2
1+β

⌋
(1.1)

By choosing β = 1/e.

m ≤
ln 1

β

ln 2
1+β

m∗ +
1
2

1+β

lnN (1.2)

≤ 2.63m∗ + 2.63 lnN (1.3)

2 Prediction with Expert Advice

2.1 Formal Protocol

Parameters: decision space D for p̂t and fi,t, outcome space Y for yt, loss function l : D × Y → R,
set E of expert indices.

For each round t = 1,2,...
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1. the environment chooses the next outcome yt and the expert advice {fE,t ∈ D : E ∈ E}; the
expert advice is revealed to the forecaster:

2. the forecaster chooses the prediction p̂t ∈ D;

3. the environment reveals the next outcome yt ∈ Y;

4. the forecaster incurs loss l(p̂t, yt) and each expert E incurs loss l(fE,t, yt).

2.2 Goal

The forecaster’s goal is to keep as small as possible the cumulative regret (or simply regret)
with respect to each expert. Regret w.r.t expert E is defined by the sum

RE,n =
n∑

t=1

(l(p̂t, yt)− l(fE,t, yt)) = L̂n − LE,n (2.1)

where

cumulative loss of forcaster : L̂n =
n∑

t=1

l(p̂t, yt) (2.2)

cumulative loss of expert E : LE,n =
n∑

t=1

l(fE,t, yt) (2.3)

Sometimes it is also convenient to define instantaneous regret

rE,t = l(p̂t, yt)− l(fE,t, yt) (2.4)

The appropriate goal would be achieving vanishing per-round regret, that is,

max
i=1..N

Ri,n = L̂n − min
i=1..N

Li,n = o(n) (2.5)

.

Note that this has to hold for outcome sequence (yt, t = 1..n) and any experts. In other words,
we don’t make any assumption about outcome sequence and experts. It is easy to notice that
”per-round regret ( 1

n maxi=1..N Ri,n )” converges to 0 as n goes to infinity.

* Don’t be confused. Ri,t is regret w.r.t expert i, and maxi=1..N Ri,n is regret of a forecaster.

3 Weighted Average Prediction

In this section we assume regression setting where D is continuous. We will introduce how to adjust
these scheme to classification later. We now generalize weighted scheme that we introduced earlier.

p̂t =
∑N

i=1wi,t−1fi,t∑N
j=1wj,t−1

(3.1)

where wi,t−1 ≥ 0 is the weight assigned to the expert i = 1..N .
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Proper choice of w ?

Weight function We define φ : R→ R+
⋃
{0}, which is nonnegative, convex, twice differentiable,

and increasing function. Now we use this to define weight wi,t−1 = φ′(Ri,t−1).

Sanity check for φ′(Ri,t−1)

3.1 Blackwell Condition

Lemma 2.1 If the loss function l is convex in its first argument, then

sup
yt∈Y

N∑
i=1

ri,tφ
′(Ri,t−1) ≤ 0 (3.2)

Proof Let’s rephrase it.

∀yt ∈ Y,
N∑

i=1

ri,tφ
′(Ri,t−1) ≤ 0 (3.3)

Further rephrase using definition for ri,t and p̂t...

cf) Jensen’s Inequality:
If a real function f is convex, f

(Pn
i=1 wixiPn
j=1 wj

)
≤

Pn
i=1 wif(xi)Pn

j=1 wj
, for wi < 0, i = 1..n.

Scholars love new notations? If we further develop the framework in the following way, we
can cast the above lemma as an interesting way. We introduce

instantaneous regret vector : rt = (r1,t, ..., rN,t) ∈ RN (3.4)

regret vector : Rt =
n∑

t=1

rt (3.5)

It is also introduce a potential function Φ : RN → R of the form

Φ(u) = ψ

(
N∑

i=1

φ(ui)

)
(3.6)

where ψ : R→ R is nonnegative, strictly increasing, concave, and twice differentiable function, and
φ as defined before.

Now we can describe p̂t using our new notations.

p̂t =
∑N

i=1∇Φ(Rt−1)ifi,t∑N
j=1∇Φ(Rt−1)j

(3.7)

where ∇Φ(Rt−1)i = ∂Φ(Rt−1)/∂Ri,t−1. It’s exactly same definition of p̂t as previous one since
derivative of function φ will cancel out.
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Figure 1: Examples of potential function. Left: Φp(Rt−1) = (
∑N

i=1(Ri,t−1)
p
+)2/p . Right:

Φη(Rt−1) = (1/η) ln(
∑N

i=1 exp(ηRi,t−1)). We chose p = 2 and η = 1 to plot.

Polynomially Weighted Average Forecaster What ψ() and φ() are chosen?

Φp(Rt−1) =

(
N∑

i=1

(Ri,t−1)
p
+

)2/p

= ||u+||2p (3.8)

See Figure 1.

Exponentially Weighted Average Forecaster What ψ() and φ() are chosen?

Φη(Rt−1) = (1/η) ln

(
N∑

i=1

eηRi,t−1

)
(3.9)

See Figure 1.

Scenario: Calculate Rr−1, predict p̂t. Suppose we are at time t − 1 and we’ve just received
the outcome value yt−1. Rt−1 = (R1,t−1, ...,RN,t−1) is calculated using convex loss function l(·, ·).
After proceeding to time t with Rt−1 and revealed expert values, we can calculate weights and do
weighted sum to get prediction p̂t. We receive yt and calculate Rt again in the same way.

Blackwell condition Lemma 2.1 can be simply written as follows.

sup
yt∈Y

rt · ∇Φ(Rt−1) ≤ 0 (3.10)

It is called Blackwell condition.

Interpretation - Regret & potential plot.

* Note that convex loss function is not the only way to achieve Blackwell condition.
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Theorem 2.1 Assume that a forecaster satisfies the Blackwell condition for a potential Φ(u) =
ψ(
∑N

i=1 φ(ui)). Then, for all n=1,2,...

Φ(Rn) ≤ Φ(0) +
1
2

n∑
t=1

C(rt), (3.11)

where

C(rt) = sup
u∈RN

ψ′

(
N∑

i=1

φ(ui)

)
N∑

i=1

φ′′(ui)r2i,t (3.12)

We will use this to bound the regret of forecaster.

3.2 Exponentially Weighted Average Forecaster

Polynomially weighted average forecaster also gives a good bound too, but slightly worse.

Let’s focus on exponentially weighted average forecaster for now. Recall that it is defined as

Φη(Rt−1) = (1/η) ln

(
N∑

i=1

eηRi,t−1

)
(3.13)

Now the forecaster’s prediction becomes

p̂t =
∑N

i=1 exp(η(L̂t−1 − Li,t−1))fi,t∑N
j=1 exp(η(L̂t−1 − Lj,t−1))

=
∑N

i=1 e
−ηLi,t−1fi,t∑N

j=1 e
−ηLj,t−1

(3.14)

Corollary 2.2 Assume that the loss function l is convex in its first argument and that it takes
values in [0, 1]. For any n and η > 0, and for all y1, ..., yn ∈ Y, the regret of the exponentially
weighted average forecaster satisfies

L̂n − min
i=1..N

Li,n ≤
lnN
η

+
nη

2
(3.15)

By choosing η =
√

2 lnN/n, the upper bound becomes
√

2n lnN

Proof

Compare this bound with one introduced earlier
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