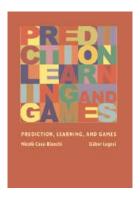
Week 1: Introduction to Online Learning

1 Introduction

This is written based on Prediction, Learning, and Games (ISBN: 0521841089 / 0-521-84108-9) Cesa-Bianchi, Nicolo; Lugosi, Gabor



1.1 A Gentle Start

Consider the problem of predicting an unknown sequence $y_1, y_2, ...$ of bits $y_t \in \{0, 1\}$. At each time t the forecaster first makes his guess $\hat{p}_t \in \{0, 1\}$ for y_t . Then the true bit y_t is revealed and the forecaster finds out whether his prediction was correct. To compute \hat{p}_t the forecaster listens to the advice of N experts. This advice takes the form of a binary vector $(f_{1,t}, ..., f_{N,t})$, where $f_{i,t} \in \{0, 1\}$ is the prediction that expert i makes for the next bit y_t .

Goal Bound the number of time steps t in which $\hat{p}_t \neq y_t$, that is, to bound the number of mistakes made by the forecaster.

1.1.1 If we know 'god' exist among experts

If there is an expert that predicts y_t 100% correctly, you can define a **forecaster** (algorithm) that makes at most $\lfloor \log_2 N \rfloor$ mistakes.

Algorithm Do majority vote using experts that haven't made any mistakes yet.

- 1. Set t = 1. Define $w_k = 1$ for experts k = 1..N.
- 2. Predict $\hat{p}_t = 1$ if weighted average of $f_{1,t},...,f_{N,t}$ is greater than $1/2,\,0$ otherwise.

3. y_t reveals. Set $w_k \leftarrow 0$ for those experts who made a mistake.

4. Increase $t \leftarrow t + 1$ Go to 2.

Proof m: #mistakes that forecaster have made so far.

 $w_k \in \{0,1\}$: weight for expert k.

 W_m : Sum of weights of experts after making m mistakes.

1.1.2 If we don't know anything about experts?

Let's come up with a simple idea and bound the performance.

Algorithm Redefine $w_k \in [0,1]$. We do weighted majority vote with weight updates. At each round, apply $w_k \leftarrow \beta w_k$ for all experts who made a mistake $(\beta \in (0,1))$.

- 1. Set t = 1. Define $w_k = 1$ for experts k = 1..N.
- 2. Predict $\hat{p}_t = 1$ if weighted average of $f_{1,t}, ..., f_{N,t}$ is greater than 1/2, 0 otherwise.
- 3. y_t reveals. Set $w_k \leftarrow \beta w_k$ for those experts who made a mistake.
- 4. Increase $t \leftarrow t + 1$ Go to 2.

Analysis and Bound Consider we are at some time step where the forecaster made his m'th mistake.

k: expert index with the fewest mistakes so far.

 m^* : mistakes made by expert k.

$$m \le \left| \frac{\log N + m^* \log(\frac{1}{\beta})}{\log \frac{2}{1+\beta}} \right| \tag{1.1}$$

By choosing $\beta = 1/e$.

$$m \le \frac{\ln\frac{1}{\beta}}{\ln\frac{2}{1+\beta}}m^* + \frac{1}{\frac{2}{1+\beta}}\ln N \tag{1.2}$$

$$\leq 2.63m^* + 2.63\ln N \tag{1.3}$$

2 Prediction with Expert Advice

2.1 Formal Protocol

Parameters: decision space \mathcal{D} for \hat{p}_t and $f_{i,t}$, outcome space \mathcal{Y} for y_t , loss function $l: \mathcal{D} \times \mathcal{Y} \to \mathbb{R}$, set \mathcal{E} of expert indices.

For each round t = 1, 2, ...

- 1. the environment chooses the next outcome y_t and the expert advice $\{f_{E,t} \in \mathcal{D} : E \in \mathcal{E}\}$; the expert advice is revealed to the forecaster:
- 2. the forecaster chooses the prediction $\hat{p}_t \in \mathcal{D}$;
- 3. the environment reveals the next outcome $y_t \in \mathcal{Y}$;
- 4. the forecaster incurs loss $l(\hat{p}_t, y_t)$ and each expert E incurs loss $l(f_{E,t}, y_t)$.

2.2 Goal

The forecaster's goal is to keep as small as possible the $cumulative\ regret$ (or simply regret) with respect to each expert. Regret w.r.t expert E is defined by the sum

$$R_{E,n} = \sum_{t=1}^{n} (l(\hat{p}_t, y_t) - l(f_{E,t}, y_t)) = \hat{L}_n - L_{E,n}$$
(2.1)

where

cumulative loss of forcaster:
$$\hat{L}_n = \sum_{t=1}^n l(\hat{p}_t, y_t)$$
 (2.2)

cumulative loss of expert
$$E: L_{E,n} = \sum_{t=1}^{n} l(f_{E,t}, y_t)$$
 (2.3)

Sometimes it is also convenient to define *instantaneous regret*

$$r_{E,t} = l(\hat{p}_t, y_t) - l(f_{E,t}, y_t)$$
 (2.4)

The appropriate goal would be achieving vanishing per-round regret, that is,

$$\max_{i=1..N} R_{i,n} = \hat{L}_n - \min_{i=1..N} L_{i,n} = o(n)$$
(2.5)

Note that this has to hold for outcome sequence $(y_t, t = 1..n)$ and any experts. In other words, we don't make any assumption about outcome sequence and experts. It is easy to notice that "per-round regret ($\frac{1}{n} \max_{i=1..N} R_{i,n}$)" converges to 0 as n goes to infinity.

* Don't be confused. $R_{i,t}$ is regret w.r.t expert i, and $\max_{i=1...N} R_{i,n}$ is regret of a forecaster.

3 Weighted Average Prediction

In this section we assume regression setting where \mathcal{D} is continuous. We will introduce how to adjust these scheme to classification later. We now generalize weighted scheme that we introduced earlier.

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{\sum_{j=1}^{N} w_{j,t-1}}$$
(3.1)

where $w_{i,t-1} \ge 0$ is the weight assigned to the expert i = 1..N.

Proper choice of w?

Weight function We define $\phi : \mathbb{R} \to \mathbb{R}^+ \bigcup \{0\}$, which is nonnegative, convex, twice differentiable, and increasing function. Now we use this to define weight $w_{i,t-1} = \phi'(R_{i,t-1})$.

Sanity check for $\phi'(R_{i,t-1})$

3.1 Blackwell Condition

Lemma 2.1 If the loss function l is convex in its first argument, then

$$\sup_{y_t \in \mathcal{Y}} \sum_{i=1}^{N} r_{i,t} \phi'(R_{i,t-1}) \le 0$$
(3.2)

Proof Let's rephrase it.

$$\forall y_t \in \mathcal{Y}, \sum_{i=1}^{N} r_{i,t} \phi'(R_{i,t-1}) \le 0$$

$$(3.3)$$

Further rephrase using definition for $r_{i,t}$ and \hat{p}_t ...

cf) Jensen's Inequality: If a real function
$$f$$
 is convex, $f\left(\frac{\sum_{i=1}^n w_i x_i}{\sum_{j=1}^n w_j}\right) \leq \frac{\sum_{i=1}^n w_i f(x_i)}{\sum_{j=1}^n w_j}$, for $w_i < 0, i = 1..n$.

Scholars love new notations? If we further develop the framework in the following way, we can cast the above lemma as an interesting way. We introduce

instantaneous regret vector :
$$\mathbf{r}_t = (r_{1,t}, ..., r_{N,t}) \in \mathbb{R}^N$$
 (3.4)

regret vector :
$$\mathbf{R}_t = \sum_{t=1}^{n} \mathbf{r}_t$$
 (3.5)

It is also introduce a **potential function** $\Phi : \mathbb{R}^N \to \mathbb{R}$ of the form

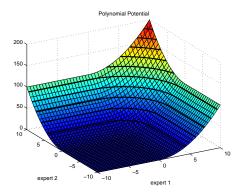
$$\Phi(\mathbf{u}) = \psi\left(\sum_{i=1}^{N} \phi(u_i)\right)$$
(3.6)

where $\psi : \mathbb{R} \to \mathbb{R}$ is nonnegative, strictly increasing, concave, and twice differentiable function, and ϕ as defined before.

Now we can describe \hat{p}_t using our new notations.

$$\hat{p}_t = \frac{\sum_{i=1}^N \nabla \Phi(\mathbf{R}_{t-1})_i f_{i,t}}{\sum_{j=1}^N \nabla \Phi(\mathbf{R}_{t-1})_j}$$
(3.7)

where $\nabla \Phi(\mathbf{R}_{t-1})_i = \partial \Phi(\mathbf{R}_{t-1})/\partial R_{i,t-1}$. It's exactly same definition of \hat{p}_t as previous one since derivative of function ϕ will cancel out.



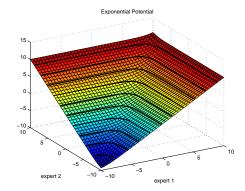


Figure 1: Examples of potential function. Left: $\Phi_p(\mathbf{R}_{t-1}) = (\sum_{i=1}^N (R_{i,t-1})_+^p)^{2/p}$. Right: $\Phi_{\eta}(\mathbf{R}_{t-1}) = (1/\eta) \ln(\sum_{i=1}^N \exp(\eta R_{i,t-1}))$. We chose p=2 and $\eta=1$ to plot.

Polynomially Weighted Average Forecaster What $\psi()$ and $\phi()$ are chosen?

$$\Phi_p(\mathbf{R}_{t-1}) = \left(\sum_{i=1}^N (R_{i,t-1})_+^p\right)^{2/p} = ||\mathbf{u}_+||_p^2$$
(3.8)

See Figure 1.

Exponentially Weighted Average Forecaster What $\psi()$ and $\phi()$ are chosen?

$$\Phi_{\eta}(\mathbf{R}_{t-1}) = (1/\eta) \ln \left(\sum_{i=1}^{N} e^{\eta R_{i,t-1}} \right)$$
(3.9)

See Figure 1.

Scenario: Calculate \mathbf{R}_{r-1} , predict \hat{p}_t . Suppose we are at time t-1 and we've just received the outcome value y_{t-1} . $\mathbf{R}_{t-1} = (\mathbf{R}_{1,t-1}, ..., \mathbf{R}_{N,t-1})$ is calculated using convex loss function $l(\cdot, \cdot)$. After proceeding to time t with \mathbf{R}_{t-1} and revealed expert values, we can calculate weights and do weighted sum to get prediction \hat{p}_t . We receive y_t and calculate \mathbf{R}_t again in the same way.

Blackwell condition Lemma 2.1 can be simply written as follows.

$$\sup_{y_t \in \mathcal{Y}} \mathbf{r}_t \cdot \nabla \Phi(\mathbf{R}_{t-1}) \le 0 \tag{3.10}$$

It is called *Blackwell condition*.

Interpretation - Regret & potential plot.

* Note that convex loss function is not the only way to achieve Blackwell condition.

Theorem 2.1 Assume that a forecaster satisfies the Blackwell condition for a potential $\Phi(\mathbf{u}) = \psi(\sum_{i=1}^{N} \phi(u_i))$. Then, for all n=1,2,...

$$\Phi(\mathbf{R}_n) \le \Phi(\mathbf{0}) + \frac{1}{2} \sum_{t=1}^n C(\mathbf{r}_t), \tag{3.11}$$

where

$$C(\mathbf{r}_t) = \sup_{\mathbf{u} \in \mathbb{R}^N} \psi'\left(\sum_{i=1}^N \phi(u_i)\right) \sum_{i=1}^N \phi''(u_i) r_{i,t}^2$$
(3.12)

We will use this to bound the regret of forecaster.

3.2 Exponentially Weighted Average Forecaster

Polynomially weighted average forecaster also gives a good bound too, but slightly worse.

Let's focus on exponentially weighted average forecaster for now. Recall that it is defined as

$$\Phi_{\eta}(\mathbf{R}_{t-1}) = (1/\eta) \ln \left(\sum_{i=1}^{N} e^{\eta R_{i,t-1}} \right)$$
(3.13)

Now the forecaster's prediction becomes

$$\hat{p}_{t} = \frac{\sum_{i=1}^{N} \exp(\eta(\hat{L}_{t-1} - L_{i,t-1})) f_{i,t}}{\sum_{j=1}^{N} \exp(\eta(\hat{L}_{t-1} - L_{j,t-1}))} = \frac{\sum_{i=1}^{N} e^{-\eta L_{i,t-1}} f_{i,t}}{\sum_{j=1}^{N} e^{-\eta L_{j,t-1}}}$$
(3.14)

Corollary 2.2 Assume that the loss function l is convex in its first argument and that it takes values in [0,1]. For any n and $\eta > 0$, and for all $y_1, ..., y_n \in \mathcal{Y}$, the regret of the exponentially weighted average forecaster satisfies

$$\hat{L}_n - \min_{i=1..N} L_{i,n} \le \frac{\ln N}{\eta} + \frac{n\eta}{2}$$
(3.15)

By choosing $\eta = \sqrt{2 \ln N/n}$, the upper bound becomes $\sqrt{2n \ln N}$

Proof

Compare this bound with one introduced earlier