Week 1: Introduction to Online Learning

1 Introduction

This is written based on Prediction, Learning, and Games (ISBN: 0521841089 / 0-521-84108-9)
Cesa-Bianchi, Nicolo; Lugosi, Gabor

PREDICTION, LEARNING, AND GAMES
Mleelh Cand-Blanchl Bl Lusgas|

1.1 A Gentle Start

Consider the problem of predicting an unknown sequence y1, y2, ... of bits y; € {0,1}. At each time
t the forecaster first makes his guess p; € {0,1} for y;. Then the true bit y; is revealed and the
forecaster finds out whether his prediction was correct. To compute p; the forecaster listens to the
advice of N experts. This advice takes the form of a binary vector (fi, ..., fv¢), where f;, € {0,1}
is the prediction that expert ¢ makes for the next bit y;.

Goal Bound the number of time steps ¢ in which p; # ¥, that is, to bound the number of mistakes
made by the forecaster.

1.1.1 If we know ’god’ exist among experts

If there is an expert that predicts v, 100% correctly, you can define a forecaster (algorithm) that
makes at most |logy N | mistakes.

Algorithm Do majority vote using experts that haven’t made any mistakes yet.
1. Set t = 1. Define wy, = 1 for experts k = 1..N.
2. Predict p; = 1 if weighted average of fi4,.., fn is greater than 1/2, 0 otherwise.



3. y; reveals. Set wy < 0 for those experts who made a mistake.
4. Increase t — t + 1 Go to 2.

Proof m: #mistakes that forecaster have made so far.
wy, € {0,1}: weight for expert k.
Wi+ Sum of weights of experts after making m mistakes.

1.1.2 If we don’t know anything about experts?

Let’s come up with a simple idea and bound the performance.

Algorithm Redefine wy € [0,1]. We do weighted majority vote with weight updates. At each
round, apply wy, < Swy, for all experts who made a mistake (8 € (0,1)).

1. Set t = 1. Define wy = 1 for experts k = 1..N.

2. Predict p; = 1 if weighted average of fi4,.., fn+ is greater than 1/2, 0 otherwise.
3. y; reveals. Set wy < Pwy for those experts who made a mistake.

4. Increase t — t + 1 Go to 2.

Analysis and Bound Consider we are at some time step where the forecaster made his m’th
mistake.

k: expert index with the fewest mistakes so far.

m™*: mistakes made by expert k.
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By choosing 5 = 1/e.
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2 Prediction with Expert Advice

2.1 Formal Protocol

Parameters: decision space D for p; and f;;, outcome space ) for y;, loss function I : D x Y — R,
set £ of expert indices.

For each round ¢t = 1,2,...



1. the environment chooses the next outcome y; and the expert advice {fg; € D : E € £}; the
expert advice is revealed to the forecaster:

2. the forecaster chooses the prediction p; € D;
3. the environment reveals the next outcome y; € V;

4. the forecaster incurs loss [(p¢, y¢) and each expert E incurs loss I(fg ¢, ).

2.2 Goal

The forecaster’s goal is to keep as small as possible the cumulative regret (or simply regret)
with respect to each expert. Regret w.r.t expert E is defined by the sum

n

Rpn = Z(l(ﬁuyt) —U(fetyt) = L — Lgn (2.1)
t=1
where
cumulative loss of forcaster : L, = Z 1(Pe, ye) (2.2)
t=1
cumulative loss of expert ' : Lg, = Z U fEt yt) (2.3)
t=1

Sometimes it is also convenient to define instantaneous regret
rEt =Dt yt) — U fEL Yt) (2.4)

The appropriate goal would be achieving vanishing per-round regret, that is,

im=1Ln— min L, = 2.5
g5 Ml = o = i B = o) 29

Note that this has to hold for outcome sequence (y;,t = 1..n) and any experts. In other words,
we don’t make any assumption about outcome sequence and experts. It is easy to notice that
"per-round regret ( %maxizlu N Rin )” converges to 0 as n goes to infinity.

* Don’t be confused. R;; is regret w.r.t expert ¢, and max;—;_n R;, is regret of a forecaster.

3 Weighted Average Prediction

In this section we assume regression setting where D is continuous. We will introduce how to adjust
these scheme to classification later. We now generalize weighted scheme that we introduced earlier.

N
N wie—1fi

ﬁt = —Zl_]\} bt 1fl7t (31)
D1 Wit—1

where w; ;1 > 0 is the weight assigned to the expert i = 1..N.



Proper choice of w ?

Weight function We define ¢ : R — R* [ J{0}, which is nonnegative, convex, twice differentiable,
and increasing function. Now we use this to define weight w; ¢—1 = ¢'(R;¢—1).

Sanity check for ¢/(R;;— 1)

3.1 Blackwell Condition

Lemma 2.1 If the loss function [ is convex in its first argument, then
N

sup ZTz',t¢/(Ri,t—1) <0 (3.2)
ytEy i=1
Proof Let’s rephrase it.
N
Yy € Y, Zri,t¢,<Ri,t—1> <0 (3.3)
i=1

Further rephrase using definition for r;; and py...

cf) Jensen’s Inequality:
If a real function f is convex, f (Z"ﬁlw"af’) < Zi:%w’f@i), for w; < 0,7 = 1..n.
j=1Wj D=1 Wj

Scholars love new notations? If we further develop the framework in the following way, we
can cast the above lemma as an interesting way. We introduce

instantaneous regret vector :r; = (ri4,...,TNt) € RN (3.4)
n

regret vector :R; = Zrt (3.5)
t=1

It is also introduce a potential function ® : RY — R of the form

N
O(u) =1 (Z ¢<ui>) (3.6)
i=1
where ¢ : R — R is nonnegative, strictly increasing, concave, and twice differentiable function, and
¢ as defined before.

Now we can describe p; using our new notations.

Y VERe)ifi
YL VO(R, 1),

(3.7)

where VO(Ry_1); = 0P(R¢—1)/0R;—1. It’s exactly same definition of p; as previous one since
derivative of function ¢ will cancel out.
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Figure 1: Examples of potential function. Left: ®,(R;—1) = (Zfil(Ri,t_l)ﬂ)wp . Right:
®,(Rs_1) = (1/n) (XN, exp(nRis—1)). We chose p =2 and 5 = 1 to plot.

Polynomially Weighted Average Forecaster What ¢() and ¢() are chosen?

N 2/p

Op(Reo1) = | > (Rig-)% | =yl (3.8)
=1

See Figure 1.

Exponentially Weighted Average Forecaster What () and ¢() are chosen?

N

®y(Re—1) = (1/n)In | Y efloe (3.9)
i=1

See Figure 1.

Scenario: Calculate R,_;, predict p;. Suppose we are at time ¢ — 1 and we’ve just received
the outcome value y;—1. Ri—1 = (Ry¢—1,..., Ry¢—1) is calculated using convex loss function I(,-).
After proceeding to time ¢t with R;_; and revealed expert values, we can calculate weights and do
weighted sum to get prediction p;. We receive y; and calculate Rt again in the same way.

Blackwell condition Lemma 2.1 can be simply written as follows.

supry- VO(Ri—1) <0 (3.10)
Yt€Y

It is called Blackwell condition.

Interpretation - Regret & potential plot.

* Note that convex loss function is not the only way to achieve Blackwell condition.



Theorem 2.1  Assume that a forecaster satisfies the Blackwell condition for a potential ®(u) =
¢(ZZ]\L1 ¢é(ui)). Then, for alln=1,2,...

O(Ry) < ®(0)+ 5 Y C(ry), (3.11)

where

N N
C(ry) = sup ¢/ (Z qb(uz)) Zgﬂ)”(ui)rzt (3.12)
i=1

ueRN i=1
We will use this to bound the regret of forecaster.

3.2 Exponentially Weighted Average Forecaster

Polynomially weighted average forecaster also gives a good bound too, but slightly worse.

Let’s focus on exponentially weighted average forecaster for now. Recall that it is defined as
N
®y(Re-1) = (1/n) In (Z enRi’“> (3.13)
i=1
Now the forecaster’s prediction becomes

N » N —nL; +_
by = >oic1 exp((Li—1 — Lig—1)) fie _ s "t fig (3.14)

Zj‘vzl exp(n(Li—1 — Lj—1)) Zj\le e—nLjt-1

Corollary 2.2 Assume that the loss function | is convex in its first argument and that it takes
values in [0,1]. For any n and n > 0, and for all y1,...,yn € Y, the regret of the exponentially
weighted average forecaster satisfies

L,— min L;, < — 4+ 5 (3.15)

By choosing n = /21n N/n, the upper bound becomes v/2nIn N

Proof

Compare this bound with one introduced earlier



