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Machine Learning Everywhere

Computer
Vision

Medical Imaging NLP Game Playing

And more!
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Molecules?

What about molecules?
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Molecular Property Prediction
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Challenge: Representation

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
Fingerprints e.g. Morgan fingerprints
Graph kernels e.g. WL-kernel
Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.
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(Simple) N-gram Graph

Our previous work 1 is inspired by the N-gram approach in NLP.

Unsupervised
Fast to compute

Overall better performance than traditional methods

1Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. ”N-gram graph: Simple
unsupervised representation for graphs, with applications to molecules.” Advances in
Neural Information Processing Systems. 2019.
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

2-grams: “I love”

N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules 7



Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

2-grams: “I love”, “love living”
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

1-grams: “I”, “love”, “living”, “in ”, “Madison”
2-grams: “I love”, “love living”, “living in”, “in Madison”
3-grams: “I love living”, “love living in”, “living in Madison”

...
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector c(n) is a numeric representation vector:
its coordinates correspond to all n-grams
its coordinate values are the number of times the corresponding
n-gram shows up in the sentence

Notice that c(1) is just the histogram of the words in the sentence.
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Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .

Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)
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Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .
Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

f(1) is just the sum of the word vectors in the sentence!
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Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .
Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

For general n:
Embedding of an n-gram is the entry-wise product of its word vectors.
f(n) is the sum of the embeddings of the n-grams in the sentence.
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N-gram graphs?

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

We can view:
atoms with different attributes as different words
walks of length n as n-grams.

A molecule Its 2-grams
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N-gram Graph algorithm

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):
Enumerate all n-grams (walks of length n)
Embedding of an n-gram: entry-wise product of its vertex vectors
f(n): sum of embeddings of all n-grams
Final N-gram Graph embedding fG : concatenation of f(1), f(2), . . . , f(T )
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N-gram Graph as simple GNN

Given vectors fi for vertices i and graph adjacency matrix A:

F(1) = F = [f1, . . . , fm], f(1) = F(1)1
for each n ∈ [2,T ] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
fG = [f(1); . . . ; f(T )]

Equivalent to a simple GNN without any parameters!
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Experimental Results

60 tasks on 10 datasets from MoleculeNet 2.
Methods:

WL-Kernel + SVM
Morgan FP + RF or XGB
Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism
Network (GIN)

N-gram Graph + RF or XGB
Vertex embedding dimension r = 100 and T = 6

2Wu, Zhenqin, et al. ”MoleculeNet: a benchmark for molecular machine learning.”
Chemical science 9.2 (2018): 513-530

N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules 15



Department of Computer Sciences, University of Wisconsin–Madison

Experimental Results

N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks
Overall better performance than other methods
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Theoretical Analysis

Recall f(1) = W c(1)
W is the vertex embedding matrix.
c(1) is the count vector.

With sparse c(1) and random W , c(1) can be recovered from f(1).
Well-known in compressed sensing.

In general, f(n) = T(n)c(n) for some linear mapping T(n) depending on W .
With sparse c(n) and random W , c(n) can be recovered from f(n).

Therefore, f(n) preserves information in c(n).
Furthermore, we can prove that regularized linear classifier on f(n) is
competitive to the best linear classifier on c(n).
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Current work: Parametric N-gram Graph

The (simple) N-gram graph algorithm has no parameter and requires no
training. Therefore, it is efficient in computation. However:

Huge design space for adding trainable parameters.
Concatenated with a classifier, it becomes end-to-end.

Why parametrize the algorithm, though?
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Weighted Vertex Features

Some features are more important, some are dummy features.
Automatic weighting of vertex features
Better representation

Given vectors F = [f1, . . . , fm]
for m vertices and graph
adjacency matrix A:

F(1) = F , f(1) = F(1)1
for each n ∈ [2,T ] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
fG = [f(1); . . . ; f(T )]
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for each n ∈ [2,T ] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
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Then for a vertex embedding
fi , W1fi will stretch its
components along W1’s
larger singular vectors while
relatively shrink the
components along the smaller
ones.
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Attentive Messages

Some nodes have more impact on their neighbors.
Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [f1, . . . , fm] for m
vertices and graph adjacency matrix A:

F(1) = σ(W1F ), f(1) = F(1)1
for each n ∈ [2,T ] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1
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fG = [f(1); . . . ; f(T )]
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>
j W2[F(n−1)]i

S̄ji =
exp(sji )∑

k∈neighbors of i exp ski
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Attentive Messages: Visualization

Mutagenicity dataset: NO2 and NH2 atom groups are known to have a
mutagenic effect in a molecule.
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Weighted Summarization of Vertices

Similar to the previous case in the vertex feature space, the downstream
learning tasks may prefer certain directions in the final embedding space.

Given vectors F = [f1, . . . , fm] for m
vertices and graph adjacency matrix A:
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Parametric N-gram: Experiments

Preliminary experimental results on some classification tasks (the best
model on each task is underlined and the top-3 are bolded).
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Thank you!
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