Overview of in-context learning
Mehmet F. Demirel
The common part: unsupervised learning

• Pretrain a language model on a large corpus of linguistic data

• predict missing word —> Sam took the ____ for a walk.

• predict next word —> Sam took the dog for a ____.
The traditional way: Fine-tuning

- Fine-tune the parameters of the pre-trained model for a specific downstream task using a large (thousands to hundreds of thousands) corpus of labeled data.
- Keep training the model via repeated gradient updates.

- **Strong performance on many benchmarks.**
- **Need a new large dataset for each task.**
- **Potential for poor out-of-distribution generalization**
- **Potential to explore spurious features of the data**

Example 1
- sea otter => loutre de mer
- GRADIENT UPDATE

Example 2
- pepper mint => menthe poivrée
- GRADIENT UPDATE
- ...

Example N
- plush giraffe => girafe peluche
- GRADIENT UPDATE

Prompt
- cheese => ____________
The traditional way: Fine-tuning

- Fine-tune the parameters of the pre-trained model for a specific downstream task using a large (thousands to hundreds of thousands) corpus of labeled data.
- Keep training the model via repeated gradient updates.

- Strong performance on many benchmarks.
- Need a new large dataset for each task.
- Potential for poor out-of-distribution generalization
- Potential to explore spurious features of the data
The traditional way: Fine-tuning

- Fine-tune the parameters of the pre-trained model for a specific downstream task using a large (thousands to hundreds of thousands) corpus of labeled data.
- Keep training the model via repeated gradient updates.
- **Strong performance on many benchmarks.**
- Need a new large dataset for each task.
- Potential for poor out-of-distribution generalization
- Potential to explore spurious features of the data

```
5 + 8 = 13
```

```
EX 1
```

```
GRADIENT UPDATE
```

```
7 + 2 = 9
```

```
EX 2
```

```
GRADIENT UPDATE
```

```
9 + 8 = 17
```

```
EX N
```

```
GRADIENT UPDATE
```

```
PROMPT
```

```
5 + 4 = ___
```

In-context learning

• No training or optimization of the model parameters in the “adaptation step”.

• Simply give the model a task description as well as none/one/few examples as the input at inference time.

 • Only the task description: ZERO-SHOT

 • TD + one examples: ONE-SHOT

 • TD + a few examples: FEW-SHOT

• No gradient updates are performed.
FEW-SHOT

Translate English to French

sea otter => loutre de mer
peppermint => menthe poivrée
plush giraffe => girafe peluche

cheese => ____________

ONE-SHOT

Translate English to French

sea otter => loutre de mer
peppermint => menthe poivrée
plush giraffe => girafe peluche
cheese => ____________

ZERO-SHOT

Translate English to French
cheese => ____________

Provide the example(s) in the context of the language model.
Perform mathematical addition
5 + 8 = 13
7 + 2 = 9
9 + 8 = 17
5 + 4 = ____

Provide the example(s) in the context of the language model.
Few-shot

- Give K examples of context and completion, and one final context whose prompt we want the model to predict.
- Major reduction in the need for task-specific data.
- Reduced potential to learn an overly narrow distribution from a large but narrow fine-tuning dataset.
- Still not as good as the fine-tuning SOTA, but competitive (GPT-3).
- Still need a few task-specific data.
One-shot

- Similar to few-shot, but with only one example
- Most closely matches the way in which some tasks are communicated to humans.
Zero-shot

- Provides maximum convenience (no task-specific example needed)
- Potential for robustness
- Potential for avoidance of spurious correlations
- Most challenging
- Even for humans, it is often hard to understand a task without an example.
Foundation models

• The survey indicates that there is an emergence of functionalities (such as in-context learning) in foundation models.

• Rather than task-specific data and carefully-engineered features, NLP foundation models (such as GPT-2 and GPT-3) can make inference for given tasks whose task-specific examples are provided in the context of the language model as an input at inference time with no parameter optimization required.