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Notation.
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Derek Bean Y, = X,'TBO + €.
m Errors ¢; id fe
m dim(X;) = dim(5) = p
M-estimates.

B\p = argmin Zp(Y,- - X'3)
B

m p - “objective function”, “loss function”



Classical theory: low-dimension.
Relles (1968); Huber (1973); Portnoy (1985)
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m v’ 3 unbiased for v' 3y, asym. normal
Variance:

-1
|:VT (XTX) v] x r?(p, f.)
m Key: p grows slowly with n = p/n =~ 0.

Given f., compute r?> = possible to compare estimates

Best estimate: minimize r? over p.
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Best objective function in low-dimension.
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Popt = — |0g fe

Well known: maximum likelihood estimate (MLE).

Example MLEs:
Normal errors: Least squares (LS): popt(x) = x°.

Double exponential errors: Least absolute deviations
(LAD): popt(x) = |x|. (Robust)



Surprising simulations!
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1000 samples, 1000 simulations.



M-estimates in high-dimension.
PNAS: El Karoui et. al. 2012, to appear
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iid
(0, 1y)

u X,' ~
Then: for set of p weights v, ||v|2 = 1:
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v 3 unbiased for v’ 3y, asym. normal.
Variance:
-1 2
p x ri(p,fek)
Can characterize r? (complicated!)

Best estimate: given f. AND &, minimize r? across p
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Optimal M-estimates in high-dimension
PNAS: Bean et. al. 2012, to appear

ADVANCES
IN HIGH-
DIMENSIONA
LINEAR
ASSRSRRlY  Key results: given error density f,

Derek Bean

For each dimension p/n ~ k there exists ropt(k) such that
r(p) fe: K/) 2 ropt(ﬁz) for a” P

m Can characterize rop(k)

When f. is log-concave, rqp: is achieved by an “optimal
loss function” popt.



Details of popt.
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Write ropt = ropt(). Optimal loss:

POPt(X) = (P2 + rgpt log fropt,e)* (x) = Pa(x),

= optimal objective adaptive to dimension!
m Py(x) = x?/2

m g™ is the conjugate dual of generic convex g.
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Optimal loss
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Optimal loss vs. LS, D.E. errors
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Example: behavior of optimal loss function
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Takeaway messages.
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Derek Bean setting

Can get precise distributional behavior in high-dimensions
m Random vs. fixed design...

Can optimize the loss in high-dimensions
m A new family of dimension-adaptive loss functions

A (Not presented) Extensions to penalized estimates
m E.g. LASSO, ridge-type estimates
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