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Introduction

In the 1970’s, the relational data model was the focus of much of the research in the database area.

At this point, relational database technology is well-understood, a number of relational systems are com-

mercially available, and they support the majority of business applications relatively well. One of the

foremost database problems of the 1980’s is how to support classes of applications that are not well-served

by relational systems. For example, computer-aided design systems, scientific and statistical applications,

image and voice applications, and large, data-intensive AI applications all place demands on database sys-

tems that exceed the capabilities of relational systems. Such application classes differ from business appli-

cations in a variety of ways, including their data modeling needs, the types of operations of interest, and the

storage structures and access methods required for their operations to be efficient.

A number of database research efforts have recently begun to address the problem of building data-

base systems to accommodate a wide range of potential applications via some form of extensibility. Such

projects include EXODUS at the University of Wisconsin [Carey and DeWitt 1985, Carey, et al. 1986b,

Carey and DeWitt 1987], PROBE at CCA [Dayal and Smith 1985, Manola and Dayal 1986], POSTGRES

at Berkeley [Stonebraker and Rowe 1986, Rowe and Stonebraker 1987], STARBURST at IBM Almaden

[Schwarz, et al. 1986, Lindsay, et al. 1987], and GENESIS at UT-Austin [Batory, et al. 1986]. Although

the goals of these projects are similar, and each uses some of the same mechanisms to provide extensibility,

the overall approach of each project is quite different. STARBURST, POSTGRES, and PROBE are com-

plete database systems, each with a (different) well-defined data model and query language. Each system

aims to provide the capability for users to add extensions such as new abstract data types and access

methods within the framework provided by their data model. STARBURST is based on the relational

model; POSTGRES extends the relational model with the notion of a procedure data type, triggers and

inferencing capabilities, and a type hierarchy; PROBE is based on an extension of the DAPLEX functional

data model, and includes support for spatial data and a class of recursive queries.
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The EXODUS project is distinguished from all but GENESIS by virtue of being a "database genera-

tor" effort as opposed to an attempt to build a single (although extensible) DBMS for use by all applica-

tions. The EXODUS and GENESIS efforts differ significantly in philosophy and in the technical details of

their approaches to DBMS software generation. GENESIS has a stricter framework (being based on a

"building block" plus "pluggable module" approach), whereas EXODUS has certain powerful fixed com-

ponents plus a collection of tools for a database implementor (DBI) to use in building the desired system

based around these components.

The EXODUS group is addressing the challenges posed by emerging database applications by

developing facilities to enable the rapid implementation of high-performance, application-specific database

systems. EXODUS provides a set of kernel facilities for use across all applications, such as a versatile

storage manager (the focus of this chapter) and a general-purpose manager for type-related dependency

information. In addition, EXODUS provides a set of tools to help the DBI to develop new database system

software. The implementation of some DBMS components is supported by tools which actually generate

the components from specifications; for example, tools are provided to generate a query optimizer from a

rule-based description of a data model, its operators, and their implementations [Graefe and DeWitt 1987].

Other components, such as new abstract data types, access methods, and database operations, must be

explicitly coded by the DBI due to their more widely varying and highly algorithmic nature.1 EXODUS

attempts to simplify this aspect of the DBI’s job by providing a programming language with constructs

designed specifically for use in writing code for the components of a DBMS [Richardson and Carey 1987].

Finally, we are currently developing a data model and an associated query language to serve as starting

points for subsequent EXODUS DBMS implementation efforts.

In this chapter we describe the object and file management facilities of EXODUS. The initial design

of the EXODUS storage manager was outlined in [Carey, et al. 1986a]; this is an updated description,

reflecting changes in the design that occurred as we developed the (now operational) first version of the

system. The chapter is broken down as follows: The next section describes related work on "next genera-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 Actually, EXODUS will provide a library of generally useful components, such as widely-applicable access methods including

B+ trees and some form of dynamic hashing, but the DBI must implement components that are not available in the library.
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tion" storage systems. In Section 2, an overview of the EXODUS storage system is presented and the key

characteristics of the EXODUS storage manager are described. Section 3 describes the interface that is

provided by the EXODUS storage manager to the higher levels of EXODUS. In Section 4, which makes

up the majority of the chapter, we present a detailed description of our data structures for object storage

and summarize results from an early performance evaluation of the algorithms that operate on large storage

objects. Section 4 also describes the techniques employed for versioning, concurrency control, recovery,

and buffer management for such objects. Section 5 sketches the techniques used to implement files of

storage objects. Finally, the last section summarizes the contents of this chapter.

1. Related Work

There have been a number of other projects to construct file and object management services related

to those provided by EXODUS. In [Kaehler and Krasner 1983], LOOM, a Large Object-Oriented

Memory for Smalltalk-80, is described. LOOM extended the object storage capabilities of Smalltalk-80 to

allow the manipulation of up to 231 objects instead of 215 objects. Problems associated with large objects

were not addressed, and the system provided no facilities for sharing (e.g., shared buffers, concurrency

control or recovery).

Another related system is the file system for the iMAX-432 [Pollack, et al. 1981]. This file system

provided support for system-wide surrogates to name objects and for atomic actions on objects using a

modification of Reed’s versioning scheme [Reed 1983]. The design was based on the premise that most

objects are small (less than 500 bytes); special consideration was given to clustering related objects

together and to garbage-collecting deleted objects to minimize wasted file space.

The GemStone database system [Maier, et al. 1986] is an object-oriented DBMS based on a

Smalltalk-like data model and interface. In terms of storage management, GemStone objects are decom-

posed into collections of small elements (ala Smalltalk objects); the system’s object manager is responsible

for clustering related elements together on disk via segments. The Gemstone architects have investigated

indexing issues that arise in an object-oriented DBMS environment. Large objects and collections of

objects are represented on disk via mechanisms similar to those employed in EXODUS (and described in

this chapter).
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The Darmstadt Database Kernel System [Depp86, Paul, et al. 1987] is also related to our work, hav-

ing been motivated by similar application-related considerations. However, the emphasis of their kernel

architecture is on support for complex records (i.e., nested relations), and in particular on clustering their

components and providing an efficient means to relocate entire complex objects (e.g., from a host to a

workstation). Components of complex objects are viewed as records with bytestring attributes. Objects

are passed between the kernel and its clients by copying data between a page-oriented kernel buffer and a

client-provided object buffer.

The storage system of POSTGRES [Stonebraker and Rowe 1986, Stonebraker 1987] is based on the

use of tuples and relations. Each tuple is identified by a unique 64-bit surrogate that never changes. Tuples

are not updated in-place. Instead, new versions of modified tuples are inserted elsewhere into the database.

A "vacuuming" process moves old data to an archival disk for long-term storage. Since complex objects

are implemented through the use of POSTQUEL as a data type, no explicit mechanisms for supporting the

storage or manipulation of large complex objects are provided.

Finally, the object server developed at Brown University [Skarra, et al. 1986] is also relevant. The

object server provides a notion of objects and files similar to that of EXODUS. However, the main focus

of their work has been on issues arising from a workstation/server environment; for example, they provide

a set of "notify" lock modes to support efficient object sharing in such an environment.

2. Overview of the EXODUS Storage System

This section presents a brief overview of the EXODUS storage system. The following paragraphs

highlight the key characteristics of the EXODUS storage system that will be expanded upon in the

remainder of the chapter.

Storage Objects: The basic unit of stored data in the EXODUS storage system is thestorage object,

which is an uninterpreted byte sequence of virtually unlimited size. By providing capabilities for storing

and manipulating storage objects without regard for their size, a significant amount of generality is

obtained. For example, an access method such as a B+ tree can be written without any knowledge of the

size of the storage objects it is manipulating. Not providing this generality has severely limited the applica-

bility of WiSS [Chou, et al. 1985], which is another storage system that was developed at the University of
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Wisconsin. While WiSS provides a notion of long records, one cannot build a B+ tree on a file of long

records because of the way the system’s implementation differentiates between long and short records.

Concurrency Control and Recovery: To further simplify the user’s2 task of extending the func-

tionality of the database system, both concurrency control and recovery mechanisms are provided in

EXODUS for operations on shared storage objects. Locking is used for concurrency control, and recovery

is accomplished via a combination of shadowing and logging.

Versions: As discussed in [Dayal and Smith 1985], many new database applications require support

for multiple versions of objects. In keeping with the spirit of minimizing the amount of semantics encapsu-

lated in the storage system of EXODUS, a generalized mechanism that can be used to implement a variety

of versioning schemes is provided.

Performance: An important performance issue is the amount of copying that goes on between the

buffer pool and application programs. If an application is given direct access into the buffer pool, security

may become a problem. On the other hand, in a database system supporting a VLSI design system, or

many other new applications, the application may require direct access to the storage objects in the buffer

pool in order to obtain reasonable performance — copying large (multi-megabyte) complex objects

between the database system and the application may be unacceptable. EXODUS storage system clients

are thus given the option of directly accessing data in the buffer pool; clients that will almost certainly take

advantage of this option are the application-specific access methods and operations layers. For applications

where direct access poses a security problem, a layer that copies data from database system space to user

space can easily be provided.

Minimal Semantics: One of our goals is to minimize the amount of information that the storage

system must have in order to manipulate storage objects. In particular, in order to keep the system extensi-

ble it seems infeasible for the storage system to know anything about the conceptual schema. (By concep-

tual schema, we mean the way in which data is interpreted by higher levels of the system.) On the other

hand, semantics can sometimes be useful for performance reasons. For example, it was shown in [Chou
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 Internally, we speak of such "users" as "database implementors" (or DBI’s for short). We do not intend to imply that EX-
ODUS can be extended by the naive user, as we expect EXODUS to be extended for a given application domain once, by a DBI, and
then modified only occasionally (if at all) for applications within that domain.
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and DeWitt 1985] that buffer management performance can be improved by allowing the buffer manager

to capture some semantics of the operations being performed. Our solution is to keep schema information

out of the storage system, but then to allowhints to be provided which can help in making decisions that

influence performance in important ways. For example, the buffer manager accepts hints guiding its choice

of replacement policies, and the storage manager also supports clustering hints which guide its placement

of objects on disk.

3. The Storage Manager Interface

Before describing the details of how large storage objects and file objects (collections of storage

objects) are represented in the EXODUS storage system, we briefly outline the nature of the interface pro-

vided for use by higher levels of EXODUS. In most cases, we expect the next level up to be the layer that

provides the access methods (and perhaps version support) for a given EXODUS application. This layer is

likely to change from one application to another, although we expect to provide a library of standard access

methods and version management code that can be used/extended by the authors of an application-specific

DBMS. The intended implementation language for such a layer is E [Richardson and Carey 1987], which

shields clients from some of the details of the storage manager interface, although we also expect to sup-

port some clients who wish to use only the storage manager of EXODUS.

The EXODUS storage system provides a procedural interface. This interface includes procedures to

create and destroy file objects and to scan through the objects that they contain. For scanning purposes, the

storage system provides a call to get the object id of the next storage object within a file object. It also pro-

vides procedures for creating and destroying storage objects within a file; all storage objects must reside in

some file object. For reading storage objects, the EXODUS storage system provides a call to get a pointer

to a range of bytes within a given storage object; the desired byte range is read into the buffers, and a

pointer to the bytes is returned to the caller. Another call is provided to inform EXODUS that these bytes

are no longer needed, which "unpins" them in the buffer pool. For writing storage objects, a call is pro-

vided to tell EXODUS that a subrange of the bytes that were read is to be replaced with an indicated new

bytestring of the same size. For shrinking/growing storage objects, calls to insert bytes into and delete

bytes from a specified offset in a storage object are provided, as is a call to append bytes to the end of an

object (a special case of insert). Finally, for transaction management, the EXODUS storage system
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provides begin, commit, and abort transaction calls. We also anticipate the inclusion of transaction-related

hooks, such as a call to release certain locks early, to aid the in the efficient implementation of concurrent

and recoverable operations on new access methods.

In addition to the functionality outlined above, the EXODUS storage system accepts a number of

performance-related hints. For example, the object creation routine accepts hints about where to place a

new object (e.g., "place the new object near the object with idX"); such hints can be used to achieve clus-

tering for related or complex objects. It is also possible to request that an object be alone on a disk page

and the same size as the page, which is very useful when implementing access methods. In regard to buffer

management, information about how many buffer page frames to use and what replacement policy to

employ are accepted by the buffer manager. This is supported by allowing abuffer group to be specified

with each object access; the buffer manager accepts this information on a per-buffer-group basis, which

allows variable-partition buffer management policies such as DBMIN [Chou and DeWitt 1985] to be easily

supported.

4. Storage Objects

As described earlier,storage objects are the basic unit of data in the EXODUS storage system.

Storage objects can grow and shrink in size, and their growth and shrinkage is not constrained to occur at

the end of an object, as the EXODUS storage system supports insertion and deletion anywhere within a

storage object. This section of the chapter describes the data structures and algorithms that are used to

efficiently support storage objects, particularly large dynamic storage objects.

Storage objects can be either small or large, although this distinction is hidden from clients of the

EXODUS storage system. Small storage objects reside on a single disk page, whereas large storage objects

occupy multiple disk pages. In either case, the object identifier (OID) of a storage object is of the form

(page #, slot #). Pages containing small storage objects are slotted pages, as in INGRES, System R, and

WiSS [Astrahan, et al. 1976, Stonebraker, et al. 1976, Chou, et al. 1985]; as such, the OID of a small

storage object is a pointer to the object on disk. For large storage objects, the OID points to alarge object

header. This header resides on a slotted page with other large object headers and small storage objects,

and it contains pointers to other pages involved in the representation of the large object. All other pages in
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a large storage object are private to the object rather than being shared with other small or large storage

objects (except that pages may be shared between versions of the same object, as we will see later). When

a small storage object grows to the point where it can no longer be accommodated on a single page, the

EXODUS storage system automatically converts it into a large storage object, leaving its object header in

place of the original small object3. We considered the alternative of using surrogates for OID’s rather than

physical addresses, as in other recent proposals [Pollack, et al. 1981, Copeland and Maier 1984, Skarra, et

al. 1986, Stonebraker and Rowe 1986, Stonebraker 1987], but we rejected this alternative due to what we

anticipated would be its high cost — with surrogates, it would always be necessary to access objects via a

surrogate index. (Besides, a surrogate index can be implemented above the storage manager level for

applications where surrogate support is required.)

4.1. Large Storage Objects

The data structure used to represent large objects was inspired by the ordered relation data structure

proposed for use in INGRES [Stonebraker, et al. 1983], although there are a number of significant differ-

ences between our insertion and deletion algorithms and those of Stonebraker’s proposal. Figure 1 shows

an example of our large object data structure. Conceptually, a large object is an uninterpreted sequence of

bytes; physically, it is represented on disk as a B+ tree index on byte position within the object, plus a col-

lection of leaf (data) blocks. The root of the tree (the large object header) contains a number of

(count, page #) pairs, one for each child of the root. The count value associated with each child pointer

gives the maximum byte number stored in the subtree rooted at that child; the count for the rightmost child

pointer is therefore also the size of the object. Internal nodes are similar, being recursively defined as the

root of another object contained within its parent node; thus, an absolute byte offset within a child

translates to a relative offset within its parent node. The left child of the root in Fig. 1 contains bytes 1-

421, and the right child contains the rest of the object (bytes 422-786). The rightmost leaf node in the

figure contains 173 bytes of data. Byte 100 within this leaf node is byte 192 + 100 = 292 within the right

child of the root, and it is byte 421 + 292 = 713 within the object as a whole.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3Note that for performance reasons the inverse operation is not done; once a small object is converted to a large object, it is nev-
er again converted back to a small object.
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Figure 1: An Example of a Large Storage Object

The leaf blocks in a large storage object contain pure data — no control information is required since

the parent of a leaf contains the byte counts for each of its children. The size of a leaf block is a parameter

of the data structure, and it is an integral number of contiguous disk pages. For often-updated objects, leaf

blocks can be made one page in length so as to minimize the amount of I/O and byte-shuffling that must be

done on updates; for more static objects, leaf blocks can consist of several contiguous pages to lower the

I/O cost of scanning long sequences of bytes within such objects. (The leaf block size can be set on a per-

volume basis.) As in B+ trees, leaf blocks are allowed to vary from being 1/2-full to completely full.

Each internal node of a large storage object corresponds to one disk page, and contains betweenne

and 2ne+1 (count, pointer) pairs. We allow a maximum of 2ne+1 pairs because our deletion algorithm

works in a top-down manner and the nature of its top-down operation requires that it be possible to merge a

1/2-full node ofne entries and a node withne+1 entries into a single full node (as we will see shortly).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
No. of Tree Levels Leaf Block Size Object Size Rangeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 8KB - 2MB
2 4 32KB - 8MBiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2MB - 1GB
3 4 8MB - 4GBiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

Table 1: Some examples of object sizes.
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Finally, the root node corresponds to at most one disk page, or possibly just a portion of a shared page, and

contains between 2 and 2ne+1 (count, pointer) pairs.

Table 1 shows examples of the approximate object size ranges that can be supported by trees of

height two and three, assuming two different leaf block sizes. The table assumes 4K-byte disk pages, 4-

byte pointers, and 4-byte counts, so the internal pages contain between 255 and 511 (count, pointer) pairs.

It should be obvious from the table that two or three levels will suffice for most large objects.

Associated with the large storage object data structure are algorithms tosearch for a range of bytes,

to insert a sequence of bytes at a given point in the object, toappend a sequence of bytes to the end of the

object, and todelete a sequence of bytes from a given point in the object. The insert, append, and delete

operations are quite different from those in the proposal of Stonebraker, et al [Stonebraker, et al. 1983], as

the insertion or deletion of an arbitrary number of bytes into a large storage object poses some unique prob-

lems compared to inserting or deleting a single record from an ordered relation. Inserting or deleting one

byte is the analogy in our case to the usual single-record operations, and single-byte operations would be

far too inefficient for bulk inserts and deletes. The append operation is a special case of insert that we treat

differently in order to achieve best-case storage utilizations for large objects that are constructed via suc-

cessive appends. We consider each of these algorithms in turn.

4.1.1. Search

The search operation supports the retrieval of a sequence ofN bytes starting at byte positionS in a

large storage object. (It can also be used to retrieve a sequence of bytes that are to be modified and rewrit-

ten, of course.) Referring to the (count, pointer) pairs using the notationc [i ] andp [i ], 1≤i≤2ne+1, and let-

ting c [0]=0 by convention, the search algorithm can be described as follows:

1. Letstart = S, and read the root page and call it pageP.

2. While P is not a leaf page, do the following: SaveP’s address on the stack, and binary searchP to

find the smallest countc [i ] such thatstart≤c [i ]. Setstart=start−c [i −1], and read the page associ-

ated withp [i ] as the new pageP.

3. Once at a leaf, the first desired byte is on pageP at locationstart.

4. To obtain the rest of theN bytes, walk the tree using the stack of pointers maintained in 2.
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Considering Fig. 1 again, suppose we wish to find bytes 250-300. We setstart=250, binary search

the root, and find thatc [1]=421 is the count that we want. We setstart=start−c [0]=250 (sincec [0]=0 by

convention), and then we followp [1] to the left child of the root node. We binary search this node, and we

find thatc [2]=282 is the count that equals or exceedsstart; thus, we setstart=start−c [1]=130 and follow

p [2] to the leaf page with 162 bytes in it. Bytes 130-162 of this node and bytes 1-18 of its right neighbor

(which is reachable by walking the stack) are the desired bytes.

4.1.2. Insert

The insert operation supports the insertion of a sequence ofN bytes after the byte at positionS.

SinceN can be arbitrarily large, an algorithm that efficiently handles bulk insertions is required; as men-

tioned before, the standard B-tree insertion algorithm only works for inserting a single byte, which would

be too inefficient for large insertions. Our insert algorithm can be described as follows:

1. Traverse the large object tree until the leaf containing byteS is reached, as in the search algorithm.

As the tree is traversed, update the counts in the nodes to reflect the number of bytes to be inserted,

and save the search path on the stack.

2. Call the leaf into which bytes are being insertedL. When L is reached, try to insert theN bytes there.

If no overflow occurs, then the insert is done, as the internal node counts will have been updated in 1.

3. If an overflow occurs, proceed as follows: LetM be the left or right neighbor ofL with the most free

space (which can be determined by examining the count information inL’s parent node), and letB be

the number of bytes per leaf block. IfL andM together have a sufficient amount of free space to

accommodateN modulo B bytes of data (i.e., the overflow that would remain after filling as many

leaves with new data as possible), then evenly distribute the new data plus the old contents ofL and

M evenly between these two nodes andQN /B P newly allocated nodes. Otherwise, simply allocate as

many leaves as necessary to hold the overflow fromL, and evenly distributeL’s bytes and the bytes

being inserted amongL and the newly allocated leaves.

4. Propagate the counts and pointers for the new leaves upward in the tree using the stack built in 1. If

an internal node overflows, handle it in the same way that leaf overflows are handled (but without the

neighbor check).

The motivation for the neighbor checking portion of step 3. is to avoid allocating an additional leaf

node in cases where the overflow can instead be accommodated by a neighboring node. This adds only a

small cost to the overall expense of insertion, as it is unnecessary to access a neighboring leaf unless it is

determined (based on examining the parent’s count values) that the redistribution of data betweenL andM

will indeed succeed, whereas the neighbors would have to be read from disk before this could be known in
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the case of a standard B+ tree. Note that this modification does increase the I/O cost for insertion in cases

where such redistribution is possible — instead of readingL and then writing backL and a new node

created by splittingL (along with QN /B P other new nodes),L andM are both read and written. However,

the I/O cost increase is worth it in this case, as the modification leads to a significant improvement in

storage utilization [Carey, et al. 1986a]. Also, it might be argued that the additional cost for readingM is

not the whole picture — by redistributing the data in this way, we avoid having the system go through the

process of allocating an additional node from the free list to handle the overflow.

4.1.3. Append

The append operation supports the addition ofN bytes to the end of a large object. AppendingN

bytes differs from insertingN bytes in the way that data is redistributed among leaf pages when an

overflow occurs. The append algorithm is as follows:

1. Make a rightmost traversal of the large object tree. As the tree is being traversed, update the counts

in the internal nodes to reflect the effect of the append. As always, save the search path on the stack.

2. Call the rightmost leafR. If R has enough free space to hold the new bytes, then append the bytes to

R. The append operation is now complete in this case.

3. Otherwise, callR’s left neighbor (if it exists)L. Allocate as many leaves as necessary to holdL’s

bytes,R’s bytes, plus the new bytes being appended to the object. FillL, R, and the newly allocated

leaves in such a way that all but the two rightmost leaves of the tree are completely full. Balance the

remaining data between the two rightmost leaves, leaving each leaf at least 1/2-full. (IfL has no free

space, we can ignoreL during this step.)

4. Propagate the counts and pointers for the new leaves upward in the tree using the stack built in 1, and

handle internal node overflow as in the insertion algorithm.

The key point of this algorithm is that it guarantees that a large object which is constructed via suc-

cessive append operations will have maximal leaf utilization (i.e., all but the last two leaves will be com-

pletely full). This is particularly useful because it allows large objects to be created in steps, something

which may be necessary if the object being created is extremely large. While this algorithm could be

improved to yield higher internal node utilization by treating the internal nodes in the same way that leaves

are treated, we decided not to do this; doing so would increase the I/O cost of the algorithm, and internal

node utilization is not as critical as leaf node utilization because of the large fanout of internal nodes.
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CUT-PATH
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CUT-PATH

lca

Figure 2: Terminology for Deletion Algorithm

4.1.4. Delete

The delete operation supports the deletion ofN bytes starting at a specified byte position. In a B+

tree, the analogous problem would be that of range deletion, that is, deleting all keys between some lower

and upper bounds. Again, since the traditional B+ tree deletion algorithm removes only one record at a

time, it would be unacceptably slow for large deletions. Instead, our bulk delete algorithm proceeds in two

phases. In the first phase, it deletes the specified range of bytes, possibly leaving the tree in an unbalanced

state. The second phase makes one pass down the tree structure to rebalance the tree. (Note that the

second phase is less expensive than it may sound, as most of the relevant nodes will be buffer-resident after

the first phase.)

Deletion of an arbitrary range of bytes from the leaves of a large object will, in general, imply the

deletion of a number of entire subtrees, leaving a "raw edge" of damaged nodes. These nodes form the

cut-path of the deletion. In general, theleft andright cut-paths will start at the root, include some number

of common nodes, and then split off and proceed down the tree to two different leaves. The node at which

the left and right cut-paths diverge is called thelowest common ancestor or lca for the delete. Figure 2

illustrates the relationship between the deleted portion of the tree, the left and right cut-paths, and theirlca.

Note that if any of the nodes remaining in the tree have underflowed, they must necessarily occur along the

cut-path. The rebalancing algorithm therefore traces the cut-path in a top-down fashion, attempting to

"zipper up" the split in the tree.
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In order to minimize the I/O cost of the deletion algorithm, we use a small data structure in memory,

path, which describes the cut-path. Thepath data structure is built during the delete phase of the algo-

rithm, and it stores the disk address of each cut-path node plus the number of children that it has (including

nodes from both the left and right cut-paths). The information stored inpath is sufficient to determine if a

node isin danger of underflowing (as defined shortly). The rebalancing algorithm then examinespath in a

top-down fashion — for eachpath node, if it is in danger of underflowing, its corresponding tree node is

merged or reshuffled with a neighboring node until it is safe.

The notion of a node being in danger of underflowing (possibly without actually having

underflowed) is what allows the rebalancing algorithm to operate in one downward pass through the tree.

A node is in this situation if it cannot afford to have a pair of its child nodes merged into a single child

node, as this would cause the node itself to underflow. To prevent this possibility, all potential underflows

are instead handled on the way down the tree by merging endangered nodes with neighboring nodes, or

else by borrowing entries from neighboring nodes if such merging is impossible (i.e., if both neighbors

have more thanne entries). A node is said to haveunderflowed if either of the following conditions holds

for the node:

1. The node is a leaf and it is less than 1/2-full.

2. The node is an internal node and it has fewer thanne entries (or fewer than two entries if it is the root

node).

We say that a node isin danger of underflowing if any of the following three conditions holds:

1. The node has actually underflowed.

2. The node is an internal node with exactlyne entries (2 entries if it is the root), and one of its children

along the cut path is in danger.

3. The node is thelca, and it has exactlyne+1 entries (3 entries if it is the root), and both of its children

along the cut path are in danger.

Given this background and our definitions of underflowed and endangered nodes, we can now

describe each phase of the deletion algorithm as follows:
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Deletion Phase:

1. Traverse the object to the left and right limits of the deletion. All subtrees completely enclosed by

the traversal are deleted, and the counts in all nodes along the cut-path are updated to show the

results of the deletion. Also, for each node along the cut-path (as the tree is traversed), create a

representative node in the main-memory data structurepath which records the address of the node

and the number of children that it has left.

2. Traverse thepath data structure bottom-up, marking each node that is in danger (as defined above).

Rebalancing Phase:

1. If the root is not in danger, go to step 2. If the root has only one child, make this child the new root

and go to 1. Otherwise, merge/reshuffle4 those children of the root that are in danger and go to 1.

2. Go down to the next node along the cut-path. If no nodes remain, then the tree is now rebalanced.

3. While the current node is in danger, merge/reshuffle it with a sibling. (For a given node along the

cut-path, this will require either 0, 1, or 2 iterations of the while loop.)

4. Go to 2.

One additional note is in order with regard to the I/O cost of the deletion phase of the algorithm — in

this phase, only one leaf block ever has to be touched. Entirely deleted nodes can simply be handed back

to the free space manager directly, as their addresses are available in their parent node; furthermore, dele-

tion can be accomplished for the partially deleted leaf block on the left cut-path by simply decrementing

the byte count in its parent node. Thus, only the partially deleted leaf block on the right cut-path needs to

be read and rewritten during the deletion phase.

4.1.5. Performance Characteristics

Before we actually implemented our large object data structure and algorithms, we constructed a

main-memory prototype in order to investigate various design alternatives and performance tradeoffs. In

our study, we assumed a 4K-byte page size, and we tried using both 1-page and 4-page leaf blocks. Our

experiments consisted of using the append operation to construct objects of several different initial sizes

(with an initial storage utilization of approximately 100%), and then running a mix of randomly generated

read (search), insert, and delete operations on the objects. We experimented with 10MB and 100MB

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 The merge/reshuffle step decides whether nodes can be merged or whether bytes must be reshuffled with a neighbor, does it,

and then updatespath to maintain a consistent view of the cut-path.
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objects, and we ran tests with 1-byte, 100-byte, and 10K-byte search, insert, and delete operations. The

details of this study are described in [Carey, et al. 1986a]. We summarize the major results here, and refer

the interested reader to the original paper for further details.

Basically, we found that the EXODUS large storage object mechanism can operate on very large

dynamic objects at relatively low cost, and at a very reasonable level of storage utilization. In particular,

with the insert algorithm described in this chapter, which avoids allocating new leaf pages unless both

neighbors are unable to accommodate the overflow, we obtained average storage utilizations in the range of

80-85 percent. These results were obtained in the presence of random byte insertions and deletions; for

large static objects, utilizations of close to 100% would be the norm, and utilizations in the 90-100% range

would be expected for objects where updates are more localized. With respect to the choice of leaf block

size, our experiments highlighted the expected tradeoffs: 4-page leaf blocks were definitely advantageous

for large, multi-page reads, leading to a 30-35 percent performance improvement compared to 1-page leaf

blocks. However, they increased the cost somewhat for updates, and led to a 5-10% decrease in storage

utilization in the presence of random insertions and deletions. Multi-page leaf blocks thus offer the

greatest advantages for large, relatively static objects (e.g., raster images), where storage utilization will be

close to 100% (because such objects are built via appends and are not subjected to frequent, random

updates).

4.2. Versions of Storage Objects

As described earlier, the EXODUS storage system also provides support for versions of storage

objects. The support provided is quite primitive, with updates to a versioned object leading to the creation

of a new version of the object. An object is designated as being either a versioned or non-versioned object

when it is first created. When a versioned storage object is updated, its object header (or the entire object,

in the case of a small storage object) is copied to a new location on disk and updated there as a new version

of the object. The OID of the new version is returned to the updater, and the OID of the old version

remains the same (i.e., it is the OID that was originally passed to the update routine, since OID’s are physi-

cal addresses). To ensure that the cost of copying the new version elsewhere is not as prohibitive as it

might otherwise be [Carey and Muhanna 1986], the new version is placed on the same page of the file

object, or else on a nearby page, if possible. (Note that we do not use versions as our recovery mechanism,
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or this would be unreasonable.)

The reason for such a primitive level of version support is that different EXODUS applications may

have widely different notions of how versions should be supported, as evidenced by the wide range of

version-related proposals in the recent literature [Stonebraker 1981, Dadam, et al. 1984, Katz and Lehman

1984, Batory and Kim 1985, Clifford and Tansel 1985, Klahold, et al. 1985, Snodgrass and Ahn 1985,

Katz, et al. 1986]. Therefore, we leave the maintenance of data structures such as graphs of the versions

and alternatives of objects to a higher level of the system, a level that will vary from application to applica-

tion (unlike the storage system). The reason that we do not leave version management out of the EXODUS

storage system altogether is one of efficiency — it could be prohibitively expensive, both in terms of

storage space and I/O cost, to maintain versions of very large objects by maintaining entire copies of

objects.

Versions of large storage objects are maintained by copying and updating the pages that differ from

version to version. Figure 3 illustrates this by an example. The figure shows two versions of the large

storage object of Fig. 1, the original version,V 1, and a newer version,V 2. In this example,V 2 was created

by deleting the last 36 bytes fromV 1. Note thatV 2 shares all nodes ofV 1 that are unchanged, and it has its

own copies of each modified node. A new version of a large storage object will always contain a new copy

of the path from the root to the new leaf (or leaves); it may also contain copies of other internal nodes if

120 162 139 192 173

120 282 421 365

421 786

192 192

421 750

329

137

V
1 2

V

Figure 3: Two Versions of a Large Storage Object
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the change affects a very large fraction of the object. Since the length of the path will usually be two or

three, however, and the number of internal pages is small relative to the number of pages of actual data

(due to high fanout for internal nodes), the overhead for versioning large objects in this scheme is small —

for a given tree height, it is basically proportional to the difference between adjacent versions, and not to

the size of the objects.

Besides allowing for the creation of new versions of large storage objects, the EXODUS storage sys-

tem also supports the deletion of versions. Again, this is necessary from an efficiency standpoint; it is also

necessary if the storage system is to successfully hide the physical representation of storage objects from its

clients. The problem is that, when deleting a version of a large object, we must avoid discarding any of the

object’s pages that are shared (and thus needed) by other versions of the same object. In general, we will

have a situation like the one pictured in Fig. 4, where we wish to delete a versionV which has a direct

ancestorVa (from whichV was derived) and descendantsVd1
throughVdn

(which were derived fromV).

A naive way to insure that no shared pages are discarded would be to traverse all other versions ofV,

marking each page as having been visited, and then traverseV, discarding each unmarked page. The prob-

lem with this approach is that there may be many versions ofV, and consequently the number of pages

visited could be quite large. One way to cut down on the number of pages visited is to observe that, if an

ancestor of versionVa shares a page with a page withV, thenVa itself must also share that same page with

V. Likewise, if a descendant ofVd1
shares a page withV, Vd1

itself must also share that page withV.

Thus, it suffices to just visit the pages of the direct ancestor and the direct descendants of an object, that is,

V

. . .

. . .. . .. . .

V

V

a

d Vd dV1 2 n

Figure 4: An Example Version History
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the adjacent versions of an object (the version from which the object was directly derived, or versions

which were themselves directly derived from the object).

We can further reduce the number of pages visited by observing two things. First, if a page is shared

by two versions of a large object, then the entire subtree rooted at that page must be shared by the two ver-

sions. (An example is the leftmost child of the two version root pages in Fig. 3.) Second, if a subtree is

shared by two versions, then the root of that subtree must have the same height (i.e., distance above the leaf

level) in both versions of the object. (Again, see Fig. 3.) The first observation means that we only need to

visit a shared subtree’s root; there is no need to visit its descendant pages since they are necessarily shared.

The second observation means that if we scan versions of equal height level by level, then we can detect

the roots of shared subtrees as the level is scanned; further, for versions of unequal height, we need not

check for shared pages until we get down to the appropriate level in the taller of the two versions.

Suppose for the moment that we wish to delete versionV of an object, and thatV has just one direct

descendant,Vd. Further, suppose thatV andVd are the same height. Then, based on these two observa-

tions, the deletion algorithm can be described as follows:

1. For each internal levell of V, do the following (working top-down from the root level, wherel =0):

a. Scan the index nodes at levell in V, tentatively marking all of the page numbers encountered

in the nodes at this level for deletion. (Note that these page numbers are for pages at level

l +1.)

b. Now scan levell in Vd. If a marked page number is encountered, unmark it and avoid scan-

ning that page (and the subtree rooted at that page) in subsequent iterations.

c. Discard the pages from levell +1 of V that are still marked for deletion after step b.

2. Finish by discarding the root ofV as well.

This algorithm is easily generalized to handle the case where the heights of versionsV andVd are

unequal as well. If the height ofV is greater, then we delay scanningVd until we are scanning the level in

V with the same height as the root ofVd; the case where the height ofVd is greater is handled similarly. It

should also be clear that the algorithm can be generalized for the case where there are several versions

adjacent toV (i.e., an ancestor and several descendant versions). In this latter case, step (b) must be per-

formed for levell of each adjacent version, as a page ofV cannot be discarded unless no adjacent version

shares that page withV. As input, then, the version deletion operation takes the OID of the version to be
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deleted and the set of OID’s of its adjacent versions; it deletes the specified version while leaving all of the

pages that it shares with adjacent versions intact. As described earlier, we leave the problem of maintain-

ing information about adjacent versions, like those in the example of Fig. 4, to a higher level of the system.

To implement this algorithm efficiently, one can use a breadth-first search to scan the objects and a

main-memory hash table to store the page numbers of the marked pages. Note that it isnever necessary to

actually read any leaf pages from the disk with this algorithm — in the worst case, where there is no shar-

ing of pages between versions, the algorithm simply ends up visiting every non-leaf page of every version,

which is much better than also visiting the leaves. (Leaf blocks comprise the vast majority of each version

— with internal node fanouts of several hundred, non-leaf pages represent less than 1% of the storage

requirements for very large objects). In typical cases, however, the algorithm will visit relatively few

pages, as adjacent versions are likely to share the bulk of their pages. Thus, despite its apparent complex-

ity, this approach is likely to be cheaper in terms of I/O cost than an approach based on reference counts, as

a reference counting scheme would almost certainly require reference counts to be inspected on all deleted

leaf pages (requiring these pages to be read).

4.3. Concurrency Control and Recovery

The EXODUS storage system provides concurrency control and recovery services for storage

objects. Initially, concurrency control is being provided via hierarchical two-phase locking [Gray 1979] at

the levels of file objects and storage objects. Our eventual plans involve locking byte ranges of storage

objects, with a "lock entire object" option being provided for cases where object level locking is sufficient.

While we expect object level locking to be the norm for small storage objects, byte range locking may be

useful for large storage objects in some applications: For updates that change the contents of a byte range

without changing the size of the range (i.e., updates that read and then rewrite bytes in some range), con-

current searches and updates in disjoint regions of the object will be permitted. However, updates that

insert, append, or delete bytes will lock the byte range from where the operation begins to the end of the

object, as the offsets of the remaining bytes are indeterminate until the updater either commits or aborts.

To ensure the integrity of the internal pages of large storage objects while insert, append, and delete

operations are operating on them (e.g., changing their counts and pointers), non-two-phase B+ tree locking
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protocols [Bayer and Scholnick 1977] will be employed. Searches and byte range updates will descend the

tree structure by chaining their way down with read locks, read-locking a node at leveli +1 and then

immediately releasing the leveli read-lock, holding only byte range read or write locks in a two-phase

manner. Since inserts, appends, and deletes will normally affect an entire root-to-leaf path5, the root and

internal pages along the path for this type of update will be write-locked for the duration of the operation

(e.g., the insert, delete, or append); again, though, only byte range write locks will be held in a two-phase

manner once the operation has completed. We have opted to use locking techniques because they are

likely to perform at least as well as other concurrency control techniques in most environments [Agrawal,

et al. 1987].

For recovery, small storage objects are being handled via classical logging techniques and in-place

updating of objects [Gray 1979, Lindsay, et al. 1979]. Log entries are operation-oriented, recording byte-

range update operations and their arguments. Recovery for large storage objects is handled using a combi-

nation of shadows and operation logging — updated internal pages and leaf blocks are shadowed up to the

root level, with updates being installed atomically by overwriting the old object header with the new header

[Verhofstad 1978]. Prior to the installation of the update at the root, the other updated pages must be writ-

ten to disk; also, the name and parameters of the update operation will be logged, with the log sequence

number (ala [Gray 1979, Lindsay, et al. 1979]) of the update log record being placed on the root page of

the object. This ensures that operations on large storage objects can be undone (by performing the inverse

operation) or redone (by re-performing the operation) as necessary in an idempotent manner. The same

recovery scheme will be employed for versioned objects as well.

4.4. Buffer Management for Storage Objects

As described earlier, one objective of the EXODUS storage system design was to minimize the

amount of copying that takes place between higher-level software and the system buffer. A second

(related) objective is to allow sizable portions of large storage objects to be scanned directly in the buffer

pool. To accommodate these needs, we allocate buffer space in either single-page units or variable-length
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 Recall that inserting, appending, or deleting bytes causes counts to change all the way up to the root. We may decide to treat
write operations similarly to simplify the recovery code.
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Figure 5: Contiguous Buffering in EXODUS

chunks, where each chunk consists of an integral number of contiguous pages. Single-page units are used

for data structures that occupy one page or less of disk space, such as small objects. Requests for single-

page units are handled separately to improve system performance, as we expect the majority of buffer

requests to be associated with small objects. Chunks are used exclusively for buffering the data of large

storage objects. The ability to allocate variable-length chunks simplifies higher-level software by making it

possible to read then scan a multi-page sequence of bytes in a large storage object without concern for page

boundaries.
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Figure 5 sketches the key aspects of the EXODUS buffering scheme for large storage objects. Sup-

pose an EXODUS client requests that a sequence ofBr bytes be read from objectO. If these bytes are not

already resident in the buffer pool, the non-empty portions of the leaf blocks ofO containing the desired

range of bytes (leaf blocksP 1, P 2, andP 3 in Fig. 5) are read into one contiguous chunkC of buffer pages.

Leaf blocks are supported by our I/O routines as a unit of transfer between the disk and the buffers, so this

can be accomplished by obtaining a chunk of the appropriate size from the buffer space manager and then

readingP 1, P 2, and lastlyP 3 into the block — in that order, and so thatP 2 begins right after the end of the

non-empty portion ofP 1, with P 3 being placed similarly. (While this constrains the order in which the leaf

blocks of a large object can be read into the buffer pool, we do not view this as a serious limitation. Also,

chained I/O could potentially be used to advantage here, as in [Paul, et al. 1987]). Achunk descriptor is

maintained by the buffer manager for the current region ofO being scanned, including information such as

the OID ofO, a pointer to its first page frame in the buffer pool, the length of the portion of the chunk con-

taining the bytes requested by clients, a pointer to the first such byte, and information about where the con-

tents of the chunk came from (for buffer replacement purposes). In the rare event that another client has

already read a portion ofBr into some other chunkC′, thenC is still allocated. This time, however, only

the portion ofBr that does not appear inC′ is read from disk; the remaining portion ofBr that appears inC′

is then replicated in C via a memory-to-memory copy. To avoid inconsistencies, measures are taken to

ensure that replicated data is never updated. In particular, any replicated portions of a chunk are deleted

from the buffer pool before the chunk is updated. (Concurrency control ensures that this is always possi-

ble, as a write lock must be obtained prior to the update.)

Since chunks can be variable-length runs of page frames, the EXODUS buffer manager employs

more sophisticated free space management techniques than other buffer managers that we have encoun-

tered. To satisfy requests for various sizes of chunks, we employ a data structure that maintains lists of

free chunks for each currently available size. When a new chunk is requested, the data structure is exam-

ined to find the "best" free chunk that satisfies the request. The notion of "best" that we currently use

favors chunks of the size requested, breaking up larger free chunks only when necessary; within a given

free chunk size, the chunk with the fewest dirty pages is taken. When there is no free chunk large enough

to satisfy the request, an attempt is made to coalesce free chunks that are adjacent to each other. If coalesc-
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ing fails to construct a large enough chunk, then the the request is rejected. Although this sounds expen-

sive, preliminary test results have shown that most chunk requests can be satisfied without coalescing.

Finally, as mentioned in the previous section, buffer space allocation and replacement are performed

using the notion of abuffer group. When a client opens a buffer group, it specifies the number of page

frames for the group (group-size) and the replacement policy (group-policy) that should be employed when

replacing its pages. A buffer group descriptor is returned to the client, and it is passed to the storage

manager by the client with requests for subsequent operations on storage objects. These operations are

then performed with respect to the group, meaning that if the client hasgroup-size pages in use, replace-

ment is performed from within the group’s pages usinggroup-policy as the replacement strategy. A client

is permitted to have multiple buffer groups open at once, so buffering schemes such as DBMIN [Chou and

DeWitt 1985], which allocates a buffer partition to each active index and relation instance in a relational

query, can be supported. Simple schemes such as global LRU are also easily supported via the buffer

group mechanism.

5. File Objects

File objects in the EXODUS storage system are collections of storage objects (i.e., sets of storage

objects, with the restriction that an object resides in exactly one set). File objects are useful for grouping

objects together for several purposes. First, the EXODUS storage system provides a mechanism for

sequencing through all of the objects in a file, so related objects can be placed in a common file for sequen-

tial scanning purposes. Second, objects within a given file are placed on disk pages allocated to the file, so

file objects provide support for objects that need to be co-located on disk.

5.1. File Representation

The representation of file objects in EXODUS is similar in some respects to the representation of

large storage objects. A file object is identified by its OID, which is a pointer to the root page (i.e., the

header) of the file object. Storage objects and file objects are distinguished by a bit in their object headers.

Like large storage objects, file objects are represented by an index structure similar to a B+ tree, but the key

for the index is different in this case — a file object index usesdisk page number as its key. Each leaf page

of the file object index contains a collection of page numbers of slotted pages contained in the file; the
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actual slotted pages themselves are managed separately, using standard techniques for page allocation and

free space management. (Figure 6 shows a file object and how its index relates to the slotted pages on

which its objects reside.) The file object index thus serves as a mechanism to gather the pages of a file

together, but it also has several additional properties of interest: It facilitates the scanning of all of the

objects within a given file objectin physical order for efficiency, and it supports the fast deletion of an

object with a given OID from a file object (as we will see in a moment). We considered several other file

designs before settling on this one, including the possibility of representing files as large storage objects

containing a sequence of OID’s, but none supported fast object deletion as well as this scheme does. Note

also that since all of the objects in a file are directly accessible via their OIDs, file objects arenot to be con-

fused with surrogate indices — external references to an object within a given file object are OID values,
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and these pointdirectly to the object.

Creation of a file object allocates the file object header. Later, when an object is to be created within

the file object, the object creation routine can be called with an optional hint of the form "place the new

object nearX", whereX is the OID of an existing object within the file. When this hint is present, the new

object is inserted on the same slotted page asX if possible. (Recall thatX’s OID identifies the desired

page.) If there is not enough space onX’s page, then the new object is inserted on a neighboring page of

the file if possible. If a neighboring page is inspected and it is also found to be full, then a new slotted page

nearX’s page is allocated for the newly inserted object and its page number is inserted into the file object

B+ tree; the OID of the file object is recorded on the newly allocated page. If no co-location hint is

present,X is simply appended to the file by placing it on the last page listed in the file object index, with

overflows again being handled in the manner just described. To speed the location of a neighboring page

for overflow handling, each slotted page has a "neighbor hint" field containing the page number of the most

recent neighboring page on which one of its overflows was placed.

Deletion of an object within a file is accomplished by simply removing the object from the page

where it resides. If the page becomes empty as a result, its page number must be deleted from the file

object index, and the page itself must be returned to the free space manager. Lastly, the deletion of an

entire file object must lead to the deletion of all of the objects residing on slotted pages listed in the file

object index, the return of those pages to the free list, and then the removal of the index itself. If a slotted

page contains one or more large object headers or file object headers, then these must of course be recur-

sively deleted; otherwise, the page can be freed immediately. Each leaf page entry in a file object index

has a bit that indicates whether or not the corresponding slotted page contains any large object headers (or

file object headers), permitting the necessary check to be performed when the file is deleted without read-

ing slotted pages that contain only small objects.

5.2. Other File Object Issues

Concurrency control and recovery for file objects is handled through mechanisms similar to those

used for large storage objects. Concurrency control (for page number insertions and deletions) is provided

using B+ tree locking protocols. Recovery is accomplished by shadowing changes up to the highest
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affected level of the file object index, logging the insert or delete operation, and finally overwriting the

highest affected node to atomically install the update. Note that these concurrency control and recovery

protocols are only exercised when the file index is modified via the insertion or deletion of page number

entries, which only occurs when a slotted page is added or removed from the file object; the storage object

concurrency control and recovery mechanisms handle slotted page changes that do not involve updates to

the file object index.

The final non-trivial issue related to file objects is the question of how one might sort a file object,

given that it is not a sequential file. In particular, since schema information has been carefully kept out of

the EXODUS storage system, the storage system does not have sufficient information to do this on its own

— it has no idea what fields the storage objects in a given file object might have, nor does it know what the

data types for the fields are. Such sorting can be accomplished at the client level by exchanging the con-

tents of storage objects according to the client’s notion of how the objects should be reordered. Note that

sorting necessarily moves the contents of objects from page to page, so their OID’s are no longer valid

when sorting has been performed. (This is the main way in which OID’s differ from surrogates, as all

other storage system operations preserve the integrity of OID’s by leaving a forwarding address at an

object’s original location when the object must be relocated.)

Summary

In this chapter, we described the design and implementation of the storage management component

of EXODUS, an extensible database management system under development at the University of Wiscon-

sin. The basic abstraction in the EXODUS storage system is the storage object, an uninterpreted variable-

length record of arbitrary size. File objects are used for grouping and sequencing through collections of

storage objects. The data structures and algorithms used to support large storage objects were described,

and the results of a study of their performance were summarized; they support large dynamic storage

objects efficiently, both in terms of storage utilization and in terms of access and update performance. An

approach was described for maintaining versions of large objects by sharing common pages between ver-

sions, and an efficient version deletion algorithm was presented. Also described in this chapter were the

EXODUS notion of file objects and our novel approach to buffer management. Concurrency control and

recovery mechanisms were briefly covered as well.
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As of this writing, the design of the EXODUS storage system is complete, and an initial version of

the system (based on the ideas presented in this chapter) is fully operational. Included in this version of the

system are support for small and large objects, file objects, buffering of variable-length portions of objects,

and shadow-based atomic updates for large objects and file objects. With the exception of concurrency

control, most multi-user aspects of the design have been accounted for in this implementation. We are now

actively building the next version of the system, which will include support for versions and full multi-user

transaction management (including concurrency control and operation logging).
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