
Query Pre-Execution and Batching in Paradise:
A Two-Pronged Approach to the Efficient Processing of

Queries on Tape-Resident Raster Images1

JieBing Yu David J. DeWitt
Department of Computer Sciences
University of Wisconsin – Madison

{jiebing, dewitt@cs.wisc.edu}

1 This work is supported by NASA under contracts #USRA-5555-17, #NAGW-3895, and #NAGW-4229, ARPA through ARPA Order

number 018 monitored by the U.S. Army Research Laboratory under contract DAAB07-92-C-Q508, IBM, Intel, Sun Microsystems,
Microsoft, and Legato.

Abstract

The focus of the Paradise project [1,2] is to design and
implement a scalable database system capable of
storing and processing massive data sets such as those
produced by NASA’s EOSDIS project. This paper
describes extensions to Paradise to handle the execution
of queries involving collections of satellite images
stored on tertiary storage. Several modifications were
made to Paradise in order to make the execution of such
queries both transparent to the user and efficient. First,
the Paradise storage engine (the SHORE storage
manager) was extended to support tertiary storage
using a log-structured organization for tape volumes.
Second, the Paradise query processing engine was
modified to incorporate a number of novel mechanisms
including query pre-execution, object abstraction,
cache-conscious tape scheduling, and query batching.
A performance evaluation on a working prototype
demonstrates that, together, these techniques can
provide a dramatic improvement over more traditional
approaches to the management of data stored on tape.

1. Introduction

In July 1997, NASA will begin to launch a series of 10
satellites as part of its Mission to Planet Earth, more
popularly known as EOSDIS (for Earth Observing
System, Data Information System). When fully
deployed, these satellites will have an aggregate data
rate of about 2 megabytes a second. While this rate is,
in itself, not that impressive, it adds up to a couple of

terabytes a day and 10 petabytes over the 10 year
lifetime of the satellites [3]. Given today’s mass storage
technology, the data will almost certainly be stored on
tape. The latest tape technology offers media that is
both very dense and reliable, as well as drives with
“reasonable” transfer rates. For example, Quantum’s
DLT-7000 drive has a transfer rate of approximately 5.0
MB/sec (compressed). The cartridges for this drive
have a capacity of 70 GB (compressed), a shelf life of
10 years, and are rated for 500,000 passes [4].
However, since tertiary storage systems are much better
suited for sequential access, their use as the primary
medium for database storage is limited. Efficiently
processing data on tape presents a number of challenges
[5]. While the cost/capacity gap [5] between tapes and
disks has narrowed, there is still a factor of 3.5 in
density between the best commodity tape technology (35
GB uncompressed) and the best commodity disk
technology (10 GB uncompressed) and a factor of 7 in
total cost ($2,000 for a 10 GB disk and $14,000 for a
350 GB tape library). In addition, storage systems using
removable media are easier to manage and are more
expandable than disk based-systems for large volume
data management.

There are two different approaches for handling tape-
based data sets in database systems. The first is to use a
Hierarchical Storage Manager (HSM) such as the one
marketed by EMASS [6] to store large objects
externally. Such systems almost always operate at the
granularity of a file. That is, a whole file is the unit of
migration from tertiary storage (i.e. tape) to secondary

storage (disk) or memory. When such a system is used
to store satellite images, each image is typically stored
as a separate file. Before an image can be processed, it
must be transferred in its entirety from tape to disk or
memory. While this approach will work well for certain
applications, when only a portion of each image is
needed, it wastes tape bandwidth and staging disk
capacity transferring entire images.

An alternative to the use of an HSM is to incorporate
tertiary storage directly into the database system. This
approach is being pursued by the Postgres [8,9] and
Paradise [1,2] projects, which extend tertiary storage
beyond its normal role as an archive mechanism. With
an integrated approach, the database query optimizer
and execution engine can optimize accesses to tape so
that complicated ad-hoc requests for data on tertiary
storage can be served efficiently. In addition, with
increasingly powerful object-relational features of
systems such as Illustra (Postgres) and Paradise,
complicated tasks like analyzing clipped portions of
interest on a large number of satellite images can be
performed as a single query [10].

In this paper, we describe the extensions that were made
to Paradise [1,2] to handle query processing on image
data sets stored on magnetic tape. Unfortunately, it is
not just as simple as adding support for tape-based
storage volumes. While modern tape technology such as
the Quantum DLT (Digital Linear Tape) 7000 is dense
and relatively fast, a typical tape seek still takes almost a
minute! Our solution is two pronged. First, we employ a
novel query execution paradigm that we term query pre-
execution. The idea of pre-execution grew from the
experimental observation2 that queries which accessed
data on tape were so slow that we could actually afford
to execute the query twice! As we will describe in more
detail in Section 4.2, during the pre-execution phase,
Paradise executes the query normally except when a
reference is made to a block of data residing on tape.
When such a reference occurs, Paradise simply collects
the reference without fetching the data and proceeds
with the execution of the query. Once the entire query
has been “pre-executed”, Paradise has a very accurate
reference string of the tape blocks that the query needs.
Then, after using a cache-conscious tape scheduling
algorithm, which reorders the tape references to
minimize the number of seeks performed, the query is
executed normally. While the idea of query pre-
execution sounds impractical, we demonstrate that it

2 Using the first version of the Paradise tertiary storage

manager which did not employ query pre-execution.

actually works very effectively when dealing with large
raster images on tape.

Paradise also uses query batching to make query
processing on tape efficient. Query batching is a variant
of traditional tape-based batch processing from the
1970s and what Gray terms a data pump [11]. The
idea of query batching is simple: dynamically collect a
set of queries from users, group them into batches such
that each batch uses the same set of tapes3, pre-execute
each query in the batch to obtain its reference string,
merge the reference strings, and then execute the queries
in the batch together (concurrently). The processing of a
batch is done essentially in a “multiple instruction
stream, single data stream” (MISD) mode. The ultimate
goal is to scan each tape once sequentially, “pumping”
tape blocks through the queries that constitute the batch
as the blocks are read from tape.

To illustrate some of the issues associated with accessing
a tertiary-resident data set in system like Paradise,
consider an example in which we need to process a
year’s worth of weekly satellite imagery data. Figure 1
shows such a data set stored in Paradise: the entire data
set appears to the user as a single relation with ‘Week’
and ‘Channel’ as integer attributes and Image as an
attribute of type Raster ADT. The bodies of the images
are stored sequentially on a tape volume in time order.
The disk -resident portion of the Raster ADT contains
metadata that includes OIDs linking the metadata with
the actual images. Consider the following query: Find
all image pairs from week 1 and week 26 which bear
similarities over a specified region on each channel.

 0 1 2 125 126 127
Image Layout on Tape

Meta Data on Disk
Week Channel Image

 3 1 ID2

 2 1 ID1

 1 1 ID0

 3 26 ID127

 2 26 ID126

 1 26 ID125

Query:
Find image pairs from two weeks
(1 and 26) on each channel which
bear similarities over a particular
region of interest.

Evaluate:
SIMILAR(ID0, ID125)
SIMILAR(ID1, ID126)
SIMILAR(ID2, ID127)

Expected Tape Requests:
0, 125, 1, 126, 2, 127

Figure 1: Motivating Example

3 We assume that there are enough tape readers to mount all

the tapes needed by a batch simultaneously.

Executing this query requires evaluating the SIMILAR()
function on image pairs (i.e. channel 1 with channel 1,
channel 2 with channel 2,...) from weeks 1 and 26. It is
clear from Figure 1 that evaluating this function naively
will cause excessive tape head movement between the
two sets of images. To eliminate these random tape
accesses, the relevant portions of all images from week 1
must be cached on disk before the first image from week
26 is accessed. While using techniques from executing
pointer joins [12] or assembling complex objects [13] to
reorder object accesses may help reduce the number of
random accesses, in a multi-user environment, even if
each query is executed using its best plan, the aggregate
effect can still result in a large number of random tape
accesses. The limited size of the disk cache can make
matters even worse. It is not sufficient to rely solely on
the query optimizer to generate optimal plans for tertiary
query processing

The remainder of this paper is organized as follows. In
Section 2, we summarize research related to the problem
of adding tertiary storage support to database systems.
The mechanisms used to extend Paradise to handle
tertiary storage volumes are described in Section 3.
Section 4 describes the design and implementation of
query pre-execution and query batching inside Paradise.
Section 5 contains a performance evaluation of these
techniques. Our conclusions and future research
directions are contained in Section 6.

2. Related Work

Tertiary Storage Management

The focus of the Highlight [14] and LTS [15] projects is
the application of log-structured file system techniques
[16] to the management of tertiary storage. Highlight
integrates LFS with tertiary storage by allowing the
automatic migration of LFS file segments (containing
user data, index nodes, and directory files) between
secondary and tertiary storage. The partial-file migration
mechanisms in Highlight were the first attempt to
provide an alternative to the whole-file migration
techniques that have been widely employed by HSM
(Hierarchical Storage Management) systems. Highlight’s
approach is closely integrated with LFS and treats
tertiary storage primarily as a backing store. LTS has a
more flexible design whose objective is to provide a
general-purpose block-oriented tertiary storage manager.
Extensions to Postgres to manage data on optical juke
box are described in [8]. Our design for Paradise’s
tertiary storage volume manager borrows a number of
techniques from LTS, but focuses on the use of tape
devices instead of optical devices.

A multi-layered caching and migration architecture to
manage persistent objects on tertiary storage is proposed
in [17]. Their preliminary results demonstrate that
sequential access to tape segments benefits from the
multi-level caching while random accesses may cause
excessive overhead.

Tape Scheduling

The very high access latency associated with magnetic
tape devices has prompted a number of researchers to
explore alternative ways of minimizing the number of
random tape I/Os. [18] and [19] extend various disk I/O
scheduling algorithms to the problem of tape I/O
scheduling. [18] models access behaviors for helical
scan tapes (e.g. 8mm tapes) and investigates both tape
scheduling and cache replacement policies. Their results
demonstrate that it is very important to consider the
position of the tape head when attempting to obtain an
optimal schedule for a batch of tape accesses. [19]
models the behavior of accesses to serpentine tapes (e.g.
DLT tapes), and compares different scheduling
algorithms designed to optimize random I/Os on a DLT
drive. Both studies show that careful scheduling of tape
accesses can have a significant impact on performance.

Data Placement on Tapes

[20] and [21] investigate the optimal placement of data
on tape in order to minimize random tape I/Os. These
algorithms assume a known and fixed access pattern for
the tertiary tape blocks. While very effective for
applications that have fixed access patterns, they may
not be as effective for general-purpose database systems
in which ad-hoc queries can make predetermining access
patterns essentially impossible. In addition, collecting
the access patterns and reorganizing data on tapes over
time may be a difficult task to accomplish in an on-line
system.

Tertiary Storage Query Processing

[22] and [23, 24] propose special techniques to
optimize the execution of single join operations for
relations stored on tape. Careful selection of the
processing block size and the ordering of block accesses
is demonstrated to reduce execution time by about a
factor of 10. [24] exploits the use of I/O parallelism
between disk and tape devices during joins. [23] also
identifies a number of system factors that have a direct
impact on query processing with a focus on single
relational operations.

User-Managed Tertiary Storage

The first attempt to integrate tertiary storage into a
database system appeared in [25]. A three-level storage
hierarchy was proposed to be under the direct control of
a database management system with tertiary storage at
the bottom layer. Data could be “elevated” from tertiary
storage to secondary storage via user-level commands.
Another user-level approach is described in [26], in
which the concept of a user-defined abstract is proposed
to reduce the number of accesses that have to be made to
tertiary storage. The idea is that by carefully abstracting
the important contents of the data (aggregate and
summary information) to form an abstract that is stored
on disk, the majority of queries can be satisfied using
only the abstracts.

Integrated Approach

The most comprehensive system-level approach for
integrating tertiary storage into a general database
management system is proposed in [9]. A novel
technique of breaking relations on tertiary storage into
smaller segments (which are the units of migration from
tertiary to secondary storage) is used to allow the
migration of these segments to be scheduled optimally.
A query involving relations on tertiary storage is
decomposed into multiple mini-queries that operate in
terms of segments. These mini-queries are then
scheduled at run-time according to the availability of the
involved segments on disk and memory. A set of
priority-based algorithms are used to fetch the desired
segments from tertiary storage on demand and to replace
segments on the cache disk.

Follow-up work in [27] details a framework for
dynamically reordering query execution by modifying
query plans based on the availability of data segments.
The difference between this approach and ours is that
our emphasis is on optimizing tape accesses at the
bottom layer of the execution engine, leaving the
original query plan unchanged. Not only is this strategy
simpler but also it provides more opportunities for
optimizing executions under multiuser environment.
However, it appears fruitful to consider combining the
two approaches using query pre-execution as mechanism
to “resolve” [27] accesses to satellite images and using
“schedule nodes” [27] in our query plans to handle data
dependencies between operators in the query tree.

3. System Architecture

Paradise is an object-relational database system whose
primary focus is on the efficient management and
processing of large, spatial and multimedia data sets.

The structure of the Paradise server process is shown in
Figure 2. The SHORE storage manager [28] is used as
the underlying persistent object manager. Support for
tertiary storage in Paradise began by the extending
SHORE. These extensions are described in the
following section.

3.1 SHORE Storage Manager Extensions for
Tertiary Storage

The SHORE storage manager is a persistent object
manager with built-in support for multi-threading,
concurrency control, recovery, indexes and transactions.
It is structured as a set of logical modules (implemented
as C++ classes). Access to permanent data involves four
modules: a disk read/write process4, the buffer manager,
the I/O manager, and a disk volume manager. To the
basic SHORE storage manager, we added the following
components: a block-oriented tape I/O driver, a tertiary
storage volume manager, a disk-cache buffer manager,
and a cache volume manager. Together with minor
modifications in other higher layer modules, the addition
of these components enables the SHORE SM to directly
access volumes on tertiary storage. The details of these
components are described below.

Paradise ADTs

Catalog Manager

Extent Mgr Tuple Mgr

 Query
Optimizer Scheduler

Shore Storage
 Manager

R
P
C

Paradise SQL
 Queries

Result Paradise
 Tuples

Paradise
 Client

Figure 2: Paradise Process Architecture

Block-Oriented Tape I/O Driver

As the low-level physical driver for accessing data on
tape volumes, this module adds a block-oriented access
interface on top of the standard UNIX tape I/O routines.
The driver formats a tape into a set of fixed-sized tape
blocks. As a request for a particular physical tape block
arrives, the driver directs the tape head to the

4 The disk read/write process is used to obtain asynchronous

I/O in those OS environments that lack a non-blocking I/O
mechanism.

corresponding physical address, and performs the
read/write operation in a block-oriented fashion. The
driver is implemented as a C++ class with tape head
state information kept in its instance variables. In
addition, a set of service utilities for loading and
maintaining tape metadata information is provided to
facilitate tape mounts and dismounts. This metadata
includes information on the tape format, tape block size,
current tape end block number, and tape label. The use
of standard UNIX tape I/O routines allows the driver to
be independent of underlying tertiary storage device and
platform.

Tertiary Storage Volume Manager

The tertiary storage volume manager is responsible for
space management on tape volumes. It has all the
functionality of the normal SHORE disk volume
manager for allocating and de-allocating both pages and
extents of pages. In addition, it is responsible for
mapping individual pages to their containing tape
blocks, and keeping track of the mapping between
logical and physical tape block addresses. The basic unit
of access inside the SHORE storage manager is a page.
To simplify implementation, the tertiary storage volume
manager was designed to provide exactly the same
interface as the regular disk volume manager. This has
the advantage of making access to tertiary data totally
transparent to the higher layers of SHORE.

While preserving the same interface was critical, it is not
possible to use the same block size for both disk and
tape since the two media have very different
performance characteristics. In particular, seek
operations on tape are almost four orders of magnitude
slower than seeks on disk. Thus, a much larger block
size is required [6]. Our implementation makes it
possible to configure the tape block size when the tape
volume is being formatted. In a separate study [29], we
examine the effect of different tape block sizes for a
variety of operations on raster satellite images stored on
a Quantum DLT 4000 tape drive. For this set of tests,
we determined that the optimal tape block size was
between 64 and 256 Kbytes. Since tapes are
(unfortunately) an “append-only” media, a log-
structured organization [16] is used to handle updates
to tape blocks with dirty tape blocks being appended at
the current tail of the tape. A mapping table is used to
maintain the correspondence between logical and
physical tape blocks.

The SHORE storage manager organizes disk volumes
physically in terms of extents, which are basic units of
space allocation/de-allocation. An extent is a set of

contiguous pages. Logically, the disk volume is
organized in terms of stores, which are the logical units
of storage (like a file in UNIX file system). Each store
may consist several extents. Figure 3 depicts the regular
SHORE disk volume organization. Each rectangle on the
left denotes a page and tiles inside a page are slotted
entries. As can be seen from the figure, a set of pages in
the beginning of the volume are reserved for the
metadata storage, which includes a volume header, a
slotted array for the extent map, and another slotted
array for the store map. The extent map maintains the
page allocation within each extent, and extents
belonging to a single store are maintained as a linked list
of extents with the head of the list stored in the store
map. Figure 4 illustrates the extensions that were made
to support SHORE volumes on tertiary-storage. The
only changes are the extended volume header to cover
tape-related meta information and the addition of a tape
block mapping table. This design allowed us to
implement the tertiary storage volume manager as a C++
class derived from the disk volume manager with a
significant amount of code reuse. In addition, storing all
the needed tape volume information in its header blocks
makes the tape volume completely self-descriptive. The
header blocks are actually cached after mounting a tape
volume.

Disk Cache Manager

After being read, tape blocks are cached on secondary
storage for subsequent reuse. This disk cache is
managed by the disk cache manager. The tertiary
storage volume manager consults the disk cache
manager for information on cached tape blocks,
acquiring cache block space as necessary. The disk
cache manager uses the same resource manager utilized
by the in-memory buffer manager for cache
management, except that the unit of management is a
tape block instead of a page. Each cached entry in the
tape block mapping table contains a logical tape block
address plus the physical address of its first page in the
disk cache. With this information, the address for any
cached page can be easily calculated. In addition, a
dirty bit is used to record whether the block has been
updated. While the resource manager could incorporate
various kinds of cache-replacement policies, LRU is
used for its simplicity.

Cache Volume Manager

The cache volume manager is a simplified version of the
regular SHORE disk volume manager. It takes care of
mounting and dismounting disk cache volumes and

provides routines for reading and writing both pages and
tape blocks and for transferring tape blocks between the
cache volume and tape.5

Volume Header

Pages

Extent Map

Store Map

Data Pages

page bitmap
next extent link

owner store number

extent link head

fill factor

volume id
volume size

extent size

page size

Figure 3: Disk Volume Organization

Store Map

Data Pages

page bitmap
next extent link

owner store number

extent link head

fill factor

Pages

Tape Block
Mapping Table

Tape Volume
 Header

Extent Map

current physical end
tape block number

tape block size

disk volume header

physical tape
block number

 Figure 4: Tape Volume Organization

3.2 Examples of Tertiary Storage Accesses

Figure 5 illustrates the operation of SHORE when a
page miss occurs in the main memory buffer pool.
There are four processes present in the figure: a SHORE
SM server process, a disk read/write (rw) process for a
regular disk volume, a second disk rw process for the
cache volume, and a tape rw process for the tape
volume. A shared-memory region is used for both the
normal buffer pool and as a buffer for tape blocks being
transferred between tape and the cache volume. The
shaded components represent either new components or

5 Via memory as one cannot move blocks of data between two

SCSI devices without passing through memory.

ones that were modified to permit access to tape data. To
illustrate how each type of access is performed, we next
walk through several different types of accesses and
explain the actions involved using Figure 5.

Disk Volume Access

Access to pages from a normal disk volume involves
steps 1, 2, 3 and 4. A page miss in the main memory
buffer pool results in the following series of actions.
First, the buffer manager selects a buffer pool frame for
the incoming page and identifies the appropriate volume
manager by examining the volumeId component of the
pageId. Next, the buffer manager invokes a method on
that volume manager to fetch the page (step 1). The disk
volume manager translates the page number in the
pageId into a physical address on the disk device and
passes it along to its corresponding I/O manager (step
2). The I/O manager in turn sends6 a read request to the
associated disk rw process (step 3). The request
contains both the physical address of the page on disk
and the buffer pool frame to use. The disk driver
schedules the read and moves the page directly to its
place in buffer pool (step 4). Page writes follow a
similar sequence of steps.

1

tape vol mgr

2

4

disk rw disk rw tape rw

disk vol mgr

i/o mgr

buffer mgr

buffer pool tape transfer buffer

shared memory

cache vol mgr

3

5

12

8

9

10

11

6

7

13

Legend

page request

io request

data movement

process

logical module

SHORE SM

14

Disk
Volume

Cache
Volume

Tape
Volume

Figure 5: Tertiary Storage Access Structure

Tape Volume Access

Access to pages of tape blocks is more complicated
because the desired page may reside either in the cache
volume or on tape. First, the buffer manager sends a
request to the tape volume manager (step 5). This is the

6 Actually, a queue is maintained in shared-memory for the

volume manager to communicate I/O requests to the
appropriate disk rw or tape rw process.

7 Actually, a queue is maintained in shared-memory for the
volume manager to communicate I/O requests to the
appropriate disk rw or tape rw process.

same as step 1 except that the tape volume manager is
identified from the volumeId component of the pageId.
After receiving the request, the tape volume manager
first asks the cache volume manager whether a copy of
the desired page is in the cache volume. This is done for
both performance and correctness reasons as the cache
will have the most up-to-date version of the tape blocks.

If the cache volume manager finds an entry for the tape
block that contains the desired page, then steps 6, 7, 8, 9
are performed to fetch the page into buffer pool. First,
the tape volume manager translates the requested page
address into a page address in the cache volume. The
mapped address is then passed to the cache volume
manager which is responsible for reading the page. The
remaining steps, 7, 8, and 9, are the same as steps 2, 3,
and 4.

If the containing tape block is not found by the disk
cache manager, it must be read from tertiary storage into
the cache volume. The tape volume manager first looks
at the tape block mapping table to translate the logical
block number into a physical block number. Then,
through step 10, it calls the corresponding I/O module to
schedule the migration. The I/O manager sends a
migration request containing the physical tape block
number and which tape transfer buffer to use (step 11).
The block-oriented tape driver then processes the read
request, placing the tape block directly into the specified
tape transfer buffer (step 12). At this point, control is
returned to the tape volume manager, which invokes the
cache volume manager to transfer the tape block from
shared memory to the cache volume (step 13). Finally,
instead of going through the normal channels (steps 6, 7,
8, 9) to finish bringing the desired page into buffer pool,
we use a short cut to copy the page directly out of the
tape transfer buffer into the buffer pool (step 14).

4. Query Processing Extensions

From the previous section, it is clear that our tertiary
storage implementation places a strong emphasis on
minimizing the number of changes to the upper layers of
the SHORE Storage Manager. By carefully placing the
changes at the bottom layer of the storage structure, very
few changes in the upper layers of the SHORE SM had
to be modified, enabling us to preserve higher level
functions like concurrency control, recovery, transaction
management, and indexing for data resident on tertiary
storage. Consequently, only minimal changes were
needed to extend Paradise to manage data stored on
tertiary storage.

However, merely storing and accessing data
transparently on tape is not sufficient to insure the
efficient execution of queries against tape-resident data
sets. In particular, while database algorithms always
strive to minimize the number random disk seeks
performed, there is only a factor of 4 to 5 difference in
the cost of accessing a page on disk randomly versus
sequentially. Tapes are another story. With a seek on a
modern DLT tape drive taking almost a minute, there are
literally 4 orders of magnitude difference between
accessing a tape block randomly and sequentially. In
short, seeks must be avoided to the maximum extent
possible. In this section we describe four new
mechanisms which, when used together, help minimize
tape seeks and maximize performance of queries
involving spatial images stored on tertiary storage.

4.1 System-Level Object Abstraction

Given database support for tertiary storage, the first
question one needs to ask is what data should be stored
on tape and what data should be stored on disk. Clearly,
frequently accessed data structures like indices and
system metadata are better off stored on disk, but what
about user data? In the context of projects like
EOSDIS, it is clear tapes should be used to hold large
satellite images (typically between 10 and 100
megabytes in size) while their associated metadata
(typically a couple 100 bytes) should be stored on disk.
Separating the metadata from the actual image will help
to reduce accesses to tertiary storage for certain types of
queries. For example, the metadata for a typical satellite
image will contain information such as the date that the
image was taken, its geo-location, and some information
about the instrument and sensor that took the image.
Predicates involving date or location can be processed
by only accessing the metadata, without fetching
unnecessary images.

Assuming that images are to be stored on tape, how
should the image itself be represented in the image’s
metadata? A naive approach would be to store the OID
of the object containing the tape-resident image as part
of the disk-resident metadata. This approach is fine if
images are always accessed in their entirety. However,
processing of only pieces of images is fairly common
[10]. As a solution, Paradise uses tiling [1, 2] to
partition each image into multiple tiles, with each tile
stored as a separate object on tape. Thus, only those tiles
that are actually touched by a query need to be read from
tape.

This approach requires that the OIDs for the tiles be
stored as part of the image’s metadata. We term the set

of OIDs corresponding to the tape-resident tiles a
system-level object abstraction. This differs from the
user-level abstraction proposed by [26] in that the tiling
process is handled automatically by Paradise. Figure 6
illustrates one such representation for a raster image. In
this example, the body of the image is partitioned into 4
tiles stored on tape, while its metadata containing the tile
OIDs are stored on disk. The collection of tile OIDs act
as an object abstraction for the image data.

Tiled Image on TapeMeta-data on Disk

Image Abstraction (Tile Ids)

Figure 6: Raster Image Abstraction

Since Paradise uses an abstract data type (ADT)
mechanism for implementing all its types, the system-
level object abstraction was incorporated into the ADT
that is used for satellite images. Since all methods
operating on the image must pass through the abstracted
object representation first, the addition of this
abstraction is totally transparent to upper levels of the
system. In addition, modifications and improvements
are totally isolated in the corresponding ADT code. As
will be described later in 4.2, this representation makes
it possible to optimize tertiary storage accesses by
generating reference strings to objects on tertiary storage
without performing any tape I/Os.

4.2 Query Pre-execution

Accurately estimating access patterns for guiding run-
time resource management and scheduling has been the
goal of many projects. An accurate access pattern
estimation is important for optimizing page accesses
since all scheduling algorithms (disk or tape based)
require a queue of requests to operate on. However,
only a small number of applications have a known, fixed
access pattern and, hence, can actually benefit from such
disk/tape scheduling mechanisms. As part of our effort
to optimize tape accesses, we developed a technique that
we term query pre-execution which can be used to
accurately generate reference strings for ad-hoc queries
involving accesses to tape-resident data sets. The core

idea is to execute each query twice: the first phase
executes the query using the system-level object
abstraction described in Section 4.1 to produce a string
of tape references without performing any actual tape
I/Os (access to disk-resident data proceeds as normal -
except obviously for updates). After the query pre-
execution phase has been completed, the string of tape
block references collected during this phase are
reordered and fed to the tape scheduler (Section 4.3
describes the reordering process). Finally, the query is
executed a second time using the reordered reference
string to minimize the number of tape seeks performed.
While this idea sounds impractical, we will demonstrate
in Section 5 that it works extremely well for tape-
resident sets of satellite images. In the general case, a
mechanism such as proposed in [27] for inserting
“schedule nodes” in the query plan will be needed to
resolve data dependencies between operators in the
query tree.

In order to support the query pre-execution phase,
special mechanisms were added to Paradise’s query
execution engine to monitor the processing of the
system-level object abstractions. During the course of
pre-execution phase, if an ADT function is invoked on a
tuple for operations on the object abstraction of a large
object that resides on tertiary storage, any tape-bound
requests that might occur in the method are recorded in a
data structure instead of actually being executed. The
function returns with an indication that its result is
incomplete, and the query processing engine proceeds to
work on the next tuple. The end result of the pre-
execution phase is a sequence of tape block references in
the exact reference order that would have occurred had
the query been executed in a normal manner.

• Schema
Table rasters(time int, freq int, image Raster)

Table polygons(landuse int, shape Polygon)

• Query
Select rasters.image.clip(polygons.shape)
from rasters, polygons
where rasters.time = 1 and rasters.freq = 5

and polygons.landuse = 91

Figure 7: Sample Query

Figure 7 illustrates a query involving a “join” between a
set of polygons and a set of raster images. The “join” is
implicitly specified via the clip operation on the image
attribute. Each tuple in the “rasters” table contains three
fields: time and freq as integers and image as an instance
of the raster ADT. Tuples in the “polygons” table have

fields landuse of type integer and shape of type
polygon. By using the system-level object abstraction,
the image attribute of each tuple in the rasters relation
contains only abstractions (tile ids and their
corresponding image partition information). The query
specified is intended to select the raster images with the
desired time and freq values (1 and 5) and clip them with
all polygon shapes whose landuse value equals 91. The
clip operation is a function defined on raster ADT for
subsetting the image into the desired bounding rectangle
region covered by the polygon shape.

The top part of Figure 8 shows the spatial layout of an
example for such a query. In the figure, the selected
raster image is tiled into 4 parts, and there are two
polygons of interest to be processed. The middle part
shows how the clip operation is accomplished for the
query. The two polygons are processed in their original
order of storage on disk. The result is four rectangular
clipped portions of the raster image. During the pre-
execution of this query, the clip function is modified to
record only the tile ids for covered tiles instead of
fetching the tiles from tape and producing the clipped
result. At the end of the pre-execution, we have a
collection of tile ids in the exact order that they must be
read from tertiary storage. These tile ids are the physical
OIDs of the associated tape-resident tiles and provide a
very accurate prediction on which tape blocks will
actually be accessed when the query is executed the
second time. This is illustrated in the bottom part of
Figure 8. Notice that the raster image is replaced by its
abstraction and the result is a series of tile ids instead of
the final, clipped portions of the image in a random
order.

Overlay of Polygons and Raster

Polygon Clip Raster Query

Pre-execution of Clip Query

0 1

32
20 1 3

Figure 8: Pre-Execution Example

4.3 Cache-Conscious Tape Scheduling

The reference string of tape-block accesses generated
during query pre-execution can be used to optimize tape

accesses. Given a set of references, the problem of
optimal tape scheduling seems to be straight forward.
The sequential access nature of tape provides few
alternatives other than to sort the requests and to make
one sequential pass over the tape to process all the
requests at once. However, this seemingly
straightforward approach has a big drawback: it ignores
the fact that the tape requests must be returned in their
original order in order to execute the query. Tape-
blocks in a different order must be cached long enough
on primary or secondary storage to be referenced by the
executing query or the access will have been wasted.
This actually puts a constraint on the optimal schedule
such that the distance between the original request and
the reordered request cannot exceed the size of the disk
cache used to buffer tape blocks as they are being read
from tape. Otherwise, some of the pre-fetched tape
blocks will be prematurely ejected from the cache in
order to make room for more recently read blocks that
have not yet been used. Ejecting such blocks not only
wastes work but also adds additional random tape seeks.

To cope with this problem, one must factor the cache
size (in terms of the number of tape blocks) into the
process of finding an optimal schedule. The scheduling
problem now becomes: given a bounded buffer and a set
of requests, find the optimal scheduling of these requests
such that the number of random tape accesses is
minimized. The added constraint of the bounded buffer
makes the problem NP-Hard. While exponential
algorithms can be used to find the globally optimal
solution, this approach is too expensive in terms of time
and memory consumption for long streams of requests
and for large cache sizes. A straightforward solution is
bounded sort: break the entire stream into multiple
cache-sized chunks and sort the requests in each chunk.
This approach may, however, miss some opportunities
for further improvement. We developed a simple
heuristic-based, one-pass algorithm to find a reasonably
good cache-conscious tape schedule. The idea of the
algorithm is to reorder the original reference stream so
that the new stream consists of a number of chunks
having the following properties: 1) the tape block
references in each chunk are sorted according to their
location on tape, and 2) all the tape blocks in each chunk
can be read in order without overflowing the disk cache.
In addition, a sliding window is used to smooth out the
boundary effect that could arise from the bounded sort
step.

The algorithm works by moving across the original
reference stream from left to right and, in a single pass,
constructing a new optimized reference stream. At each

step, it looks at a sliding window of references
containing as many block references as would fit on the
disk cache8. Now, if the first block reference in the
sliding window happens to be the lowest request in the
whole window, then this reference is added to the
optimized reference stream, and the sliding window is
moved forward by one position. If the first block
reference is not the lowest reference in the window,
then all the references in the window are sorted, and the
whole chunk is added to the optimized reference string.
Then the sliding window is moved past this whole
chunk. This process is repeated until the whole input
reference stream is processed.

Figure 9 illustrates a sample run of the algorithm. We
assume that the disk cache can hold three tape blocks.
Initially, the input stream contains the reference string
7,2,1,3,4,8,6,5,8. The algorithm starts by considering the
first three references 7,2,1 (Step 1). Since 7 is not the
lowest reference in this window, the whole chunk is
reordered (Step 2). This chunk is added to the optimized
schedule, and the sliding window is moved past this
block to cover 3,4,8 (Step 3). At this stage, since 3 is
the lowest reference in this window, it is moved out of
the window immediately (Step 4). Now the window
covers 4,8,6. Again, since 4 is the lowest reference in the
stream, it is shifted out immediately. The sliding window
now covers the string 8,6,5,8 (Step 5). We note that
although the sliding window covers four tape block
references, there are only three distinct references in the
window. These references are reordered (Step 6) and the
whole chunk is moved into the optimized stream (Step
7). The use of multiple chunks for each query allows
chunks from concurrent queries to be easily merged
together by interleaving accesses in a multi-user
environment. The reordering function can be more than
just an address sorting function. For example, more
sophisticated functions like the one proposed in [19] can
be used to deal with tapes with non-linear access
characteristics (e.g. DLT tapes).

4.4 Query Batching

The final schedule produced by the cache-conscious
scheduling algorithm is used to direct query execution at
run time. When a query issues a request for a tape block
that cannot be satisfied by the disk cache volume, the
tape volume manager first examines the query’s

8 Since the same block might be referenced multiple times in a

reference stream, the sliding window might actually contain
more references than the number of blocks that fit in the
disk cache, but the number of distinct references must be
the same.

schedule to identify the block’s position in the schedule.
If the requested block is preceded by other blocks, reads
are issued for all the blocks up to and include the
requested block in the order specified by the schedule.
While the execution of a query can be temporarily
blocked due to the unavailability of data, when the
requested tape block is finally brought into the cache,
execution resumes. Since scheduling is done in terms
of cache-sized units, we are assured that blocks that are
read prior to their actual use will not result in the
eviction of blocks that will be referenced in the near
future.

Sliding Window
Unbreakable Chunk

Cache Buffer Size : 3

Optimized Schedule Original Request Stream Step

7, 2, 1, 3, 4, 8, 6, 5, 8, . . .

1,2,7, 3,

1,2,7

1

2

3

4

5

6

1, 2, 7, 3, 4, 8, 6, 5, 8, . . .

3, 4, 8, 6, 5, 8,. . .

8, 6, 5, 8 . . .

4, 8, 6, 5, 8,. . .

1,2,7, 3, 4,

1,2,7, 3, 4, 5,6,8

1,2,7, 3, 4, 5, 6, 8, . . .

. . . 7

Figure 9: One-Pass Algorithm for Finding Near-Optimal
Cache-Conscious Schedule

This execution model also provides the opportunity for
improving the performance of concurrently executing
queries as intermixing queries in such an environment
makes the problem of random tape seeks even worse.
However, simply running optimally scheduled individual
queries concurrently does not work because when their
tape reference patterns are interleaved, the resulting
reference pattern will, in general, contain a large number
of random seeks. As a solution, we used query batching
to batch concurrent queries together, combining
individually optimized schedules to produce a globally
optimized schedule, which is then used to drive the
concurrent execution of the queries in the batch. The
merge algorithm is also heuristic based, with the
objective of eliminating random accesses among
individually optimized schedules for all queries in the
current batch. It combines chunks from different
schedules using a “best-fit” criteria. In this scheme,
query execution is indirectly controlled by the tape

scheduler. With a multi-threaded server, the actual
execution of the queries in a batch can be interleaved if
their accesses to tertiary data in the merged global
schedule are also interleaved. The merge process takes
place dynamically by monitoring each new query that
arrives to determine if it can be added to the currently
executing batch. The criteria currently being deployed
is to check whether the new query’s request stream is
behind the head of the current schedule. If so, it is
blocked to be merged with next round of queries,
otherwise it is admitted immediately to the current batch.
As we will demonstrate in Section 5, this technique is
extremely effective in reducing random tape accesses
and improving system throughput in a multi-user
environment.

Since the algorithm described in Section 4.3 assumes the
exclusive control of the disk cache (by using the
maximum buffer size as the constraint on the size of an
unbreakable chunk), scheduling conflicts among
concurrent queries can cause significant performance
problems in a multiple user environment. To deal with
this problem, we reduce the buffer size used to schedule
the individual queries in order to reduce potential
conflicts. The choice of this buffer size depends on the
multiprogramming level and the access pattern to tape-
resident data. Individual tape schedules are then merged
at run time to produce an optimized plan.

5. Performance Evaluation

To evaluate the efficiency of the system in a realistic
setting, we developed a tertiary storage benchmark to
determine the effectiveness of our techniques. The
benchmark, the experimental configuration, and the
results of our tests are presented in the following
sections.

5.1 A Tertiary Storage Benchmark

While designing an effective benchmark is always a
challenge, doing one for a tertiary storage environment
is even harder. First, the size of the database must be
large enough to really test the limits of the system. This,
in turn, makes the testing process very slow and tedious.
Second, the benchmark must incorporate a variety of
access patterns in order to be realistic. In order to study
the effectiveness of the techniques described above, we
developed a scaled-down benchmark that we call the
Tertiary Storage Mini-Benchmark.

This benchmark uses regional data from the Sequoia
2000 benchmark [10]. In order to be able to compare

the relative performance of the non-optimized strategies
with our approach, we use a base benchmark consisting
of 60,000 land use polygons and 130 8MB geo-located
raster images corresponding to 5 raster images per week
for 26 weeks (for a total database size of approximately
1 GB). The test set is then scaled in two different ways.
First, we keep the number of images constant at 130
while increasing the size of each image to 32 MB. Next,
we keep the image sizes constant at 8 MB and scale the
number of images from 130 to 1300. This gives us a test
database size of slightly over 10 GB. We limit the disk
cache size to 50 MB in order to simulate a more realistic
environment, which would have tape resident data sets
in the 100s of GBs or more. The schema for the
database is the same as the one used in Figure 7.

In Figure 10 a suite of 11 queries are defined to test a
variety of query patterns. These queries are based on
raster-related queries from the Sequoia 2000 benchmark
that we modified to produce a wider variety of access
patterns. Q1, Q2 and Q3 involve 89 small polygons
clipping 26, 5, and 1 raster images respectively. Queries
Q4, Q5 and Q6 repeat Q1, Q2 and Q3 at a reduced scale
- using only 12 small polygons. These two sets of
queries are designed to mimic the scenario that a user is
interested in a number of different regions from a set of
different images. Q7, Q8 and Q9 use a fixed 1% region
to clip 26, 5, and 1 raster images respectively. Finally,
queries Q10 and Q11 are designed to reflect more
advanced queries that compare images taken from the
same instrument over different period of times. Q10
compares fixed regions of images from two adjacent
weeks on each of the five frequencies, Q11 repeats the
same process on images from two weeks that are 25
weeks apart. Since the raster images are stored on tape
in their chronological order, this suite of queries
represents an interesting combination of many different
access patterns.

5.2 System Configuration

A 200MHz Pentium Pro with 64 MB of memory running
SOLARIS 2.5 was used to run the Paradise Server.
Queries were submitted by processes running on a
different machine. Quantum Fireball 1 GB disks were
used for the log, the regular disk volume, and the cache
disk volume. For tertiary storage, we used a DLT-4000
tape drive. This drive has capacity of 20 GB
(uncompressed). For the benchmark, we used a 40 GB
tape volume, a 50 MB cache disk volume, and a 500
MB regular disk volume.

– Q1: Polygons with landuse 72 clip Rasters on frequency 5 over all weeks.

– Q2: Polygons with landuse 72 clip Rasters in week 1.

– Q3: Polygons with landuse 72 clip Raster on frequency 5 from week 1.

– Q4: Polygons with landuse 91 clip Rasters on frequency 5 over all weeks.

– Q5: Polygons with landuse 91 clip Rasters in week 1.

– Q6: Polygons with landuse 91 clip Raster on frequency 5 from week 1.

– Q7: Fixed region (1%) clip Rasters on frequency 5 over all weeks.

– Q8: Fixed region (1%) clip Rasters in week 1.

– Q9: Fixed region (1%) clip Raster on frequency 5 from week 1.

– Q10: Compare Rasters from week 1 with Rasters from week 2 on each
 frequency.

– Q11: Compare Rasters from week 1 with Rasters from week 26 on each
 frequency.

Figure 10: Tertiary Benchmark Queries

5.3 Single-user Query Execution

For the first experiment, we tested three different
configurations: “Base,” “Whole,” and “Pre-Exec.”
While the “Base” configuration provides access to
tertiary data, it does not use any of the techniques
described in Section 4. In effect, it corresponds to the
approach in which the database storage engine treats
tertiary storage as just another layer in the storage
hierarchy. The “Whole” configuration is intended to
simulate the approach of using an external tertiary
storage manager (such as EMASS [7]) to migrate
tertiary data on a per-file basis. In the “Whole”
configuration each raster image is stored as a separate
file on tape. When access to any part of the image is
detected at run-time, the processing engine issues a
request to migrate the entire file from tape to the disk
cache.9 The “Pre-Exec” configuration is our fully
integrated approach. For the “Base” and “Pre-Exec”
configuration, the tape block size was set to 128KB. For
the “Whole” configuration, a tape block size of 8 MB is
used to match the size of the raster image. The main
memory buffer cache and disk cache were flushed
between queries to insure that all queries were executed
with cold buffer pools.

Table 1 contains the response times for the eleven
benchmark queries for each of the three configurations.
Figure 11 presents the performance of the “Pre-Exec”
configuration relative to the base “Base” and “Whole”
configurations. The performance of the “Pre-Exec”
configuration is clearly superior for almost all queries.
The “Pre-Exec” configuration provides a speedup factor

9 Because an exact implementation of the “Whole” architecture was

not available, we simulated this approach by making the tape block
size the same as the image size (either 8MB or 32MB, depending
on the experiment). Whenever, any part of the image is accessed,
the tape manager will fetch the entire image from tape.

of between 6 and 20 over “Base”, and a factor of
between 4 and 10 over “Whole” for most queries. These
results demonstrate that query pre-execution, cache-
conscious tape scheduling, and run-time data driven
query scheduling are very effective in reducing random
tape I/Os when processing ad-hoc queries.

Base Whole Pre-Exec
Query 1 5652.1 908.8 282.5
Query 2 484.2 92.6 12.9
Query 3 141.4 25.3 11.7
Query 4 3125.4 800.4 280.7
Query 5 245.2 66.7 12.7
Query 6 89.8 23.8 11.6
Query 7 280.2 801.4 280.2
Query 8 12.4 68.2 12.4
Query 9 11.3 23.9 11.4
Query 10 165.9 246.8 23.3
Query 11 1187.1 1265.1 156.7

Table 1: Single Query Response Times (Seconds)

0
4

8
12

16
20

24
28

32
36

1 2 3 4 5 6 7 8 9 10 11
Query

R
es

p
o

n
se

 T
im

e
S

p
ee

d
 U

p

Pre-Exec/Base

Pre-Exec/Whole

Figure 11: Speedup of Pre-Exec over Base and Whole

The significant improvement exhibited by the “Pre-
Exec” configuration for the first 6 queries is due to the
random spatial distribution of the polygons selected by
the query. For queries Q7, Q8, and Q9, the clip region
is a fixed area. This eliminates the randomness within
each raster image among different clips, leaving
basically no room for improvement. Consequently the
“Pre-Exec” configuration is slightly slower than the
“Base” configuration as a consequence of the overhead
associated with query pre-execution. These three results
illustrate the amount of overhead (no worse than 1%)
that may incur if the tape access pattern of the original

query (before reordering) is already in its optimal order.
The final two queries (Q10 and Q11) benefit
significantly from query pre-execution for their inherent
nature of random tape access. Without query pre-
execution and tape scheduling, these two queries would
result in excessive amount of tape head movement
between images from the two weeks.

One interesting observation from this set of experiments
is that the “Whole” configuration is consistently better
than the “Base” configuration for the first 6 queries. The
reason is that these queries exhibit a high degree of
randomness in the processing of each image. This
randomness can be reduced by simply transferring the
entire image from tape to disk as a single I/O. While
this strategy works well for queries Q1 - Q6, for queries
Q7 - Q9, which only need to access 1% of the image, the
relative performance of the two configurations is
reversed. In this case, unnecessary data migration costs
the “Whole” configuration some extra work, and the
benefit of reducing random I/O within each image
cannot be capitalized due to the original serial tape
access pattern in these queries. Since the random tape
access patterns of queries Q10 and Q11 arise from
moving the tape head back and forth between the two set
of images, the “Base” and “Whole” configurations have
similar performance except that the Whole configuration
migrates more data. These tests demonstrate that the
“Pre-Exec” configuration not only reduces random tape
I/Os, but also, manages to transfer the correct amount of
data for each type of query.

Query pre-execution obviously incurs some overhead
during the first phase. To illustrate the extent of this
overhead, the response times for each of the 11 queries
are broken down in Table 2. “Phase 1” represents the
percentage of the total time required to actually pre-
execute the query. Given the reference string collected
during phase 1, “Schedule” is the percentage of total
time spent finding the optimal tape access schedule.
“Phase 2” corresponds to the final, complete execution
of the query. For all queries, there is less than a 5%
overhead for pre-execution and scheduling combined.

Next we scaled the test database in two different ways.
First, we increased the size of each image from 8MB to
32MB (what we term resolution scaleup). Second we
increased the number of images from 130 to 1300
(cardinality scaleup) while keeping the image size
constant at 8MB. Then the same set of experiments
were repeated (all queries use the same parameter). As
the results in Table 3 indicate, the “Pre-Exec”
configuration continues to have the same performance
advantage relative to the “Base” configurations.

Phase 1 Schedule Phase 2
Query 1 0.37% 0.32% 99.31%
Query 2 2.85% 2.08% 95.07%
Query 3 0.08% 1.27% 98.65%
Query 4 0.11% 0.09% 99.80%
Query 5 0.93% 0.41% 98.66%
Query 6 0.51% 0.49% 98.99%
Query 7 0.07% 0.01% 99.92%
Query 8 0.40% 1.19% 98.41%
Query 9 0.26% 0.17% 99.57%
Query 10 2.92% 0.09% 96.99%
Query 11 0.17% 0.01% 99.82%

Table 2: Breakdown of Response Time for Pre-Exec (%
of Total Time)

Query Base
(32x130)

Pre-Exec
(32x130)

Base
(8x1300)

Pre-Exec
(8x1300)

Q1 15,413 1,122 56,154 2,963

Q2 1,070 52 494 13

Q3 304 43 141 12

Q4 7,635 1,084 29,742 2,892

Q5 522 45 247 13

Q6 145 43 90 12

Q7 1,062 1,066 2,884 2,888

Q8 42 42 12 12

Q9 41 40 11 12

Q10 501 89 168 23

Q11 1,240 185 1,148 162

Table 3: Scale Up - 32MB x 130 Images and 8 MB x 1300
Images (Seconds)

5.4 Multi-user Query Execution

We next turn our attention to the execution of concurrent
queries. While the need for concurrency may be
reduced in an environment with tape-resident data,
executing multiple queries as a batch actually provides
an excellent opportunity to amortize the cost of scanning
a tape, which, as we will demonstrate below, can result
in significant performance gains.

Four alternative configurations were considered: “Pre-
Exec + Batch”—pre-execution with query batching,
“Pre-Exec + Serial”—pre-execution with serialized
execution (i.e. one query at a time), “Pre-Exec”—pre-
execution without batching (multiple queries running at
the same time with each following their optimized
schedule), and “Base”—regular concurrent execution
without either pre-execution or batching. Four client

processes were started simultaneously. Each client
picked a query randomly from the set of queries (Q1 to
Q11) and submitted it to the Paradise server for
execution. This process was repeated three times giving
a total of 12 queries. While we would have preferred to
run more queries, the base configuration for this limited
set of tests consumed over 8 hours of test time. The
results are presented in Figure 12. The metric used is
the total elapsed time to finish all three queries from all
four clients.

986 1597

20740

27549

0
5000

10000
15000
20000
25000
30000

Pre-Exec
+ Batch

Pre-Exec
+ Serial

Pre-Exec Base

Algorithms

E
la

p
se

d
 E

xe
cu

ti
o

n
 T

im
e

Figure 12: Multi-user Query Execution

 It is obvious from these results that the combination of
query pre-execution, tape scheduling, and run-time query
scheduling via query batching is much better than other
strategies. (There is almost a factor of 30 in
improvement.) The reason is fairly obvious: the
concurrent execution of multiple queries (even if they
are individually executed according to their optimized
schedules - the “Pre-Exec” case) results in a large
number of random tape seeks and, consequently, very
poor performance. On the other hand, combining the
individually optimized schedules of a batch of queries to
produce a global optimized schedule minimizes the
number of random tape seeks and maximizes
performance. In the following section we explore the
sensitivity of our results to the batch size.

5.5 Batch Size Sensitivity

To further evaluate the effectiveness of query batching,
we next conducted a set of tests to measure the
sensitivity of the results to the size of the batch. Eight
clients were used, each running five queries randomly
selected from the 11 benchmark queries. The total
elapsed time for all clients to complete the execution of
their five queries for batch sizes 1, 2, 4 and 8 is shown in
Figure 13. As expected, the performance improvement
provided by query batching increases as the batch size is
increased due to a reduction in the number of random
tape seeks performed. However, the gains obtained are
not a linear function of the batch size. The reason for

this is that there is a wide range of execution times of the
various queries in the benchmark. For any batch that
includes a long-running query, the relative effect of
query batching is reduced due to the fact that most of the
time is spent executing the long query by itself. Queries
that arrive subsequently cannot be admitted into the
current batch due to the long query’s out of band access
region. Besides, the dynamic admission scheme of query
batching may cause extra delays on queries need to
access blocks with lower addresses. Nevertheless,
noticeable improvements can be achieved by increasing
the batch size. Figure 14 shows similar results for the
same test repeated for 8 clients with each running 10
queries.

4882

3507
3001 2635

0
1000

2000
3000
4000
5000

1 2 4 8

Batch Size

T
o

ta
l E

la
p

se
d

 T
im

e
(S

ec
s)

Figure 13: Query Batching – 8 Clients X 5 Queries

10236

7988

5622
4734

0

2000

4000

6000

8000

10000

1 2 4 8
Batch Size

T
o

ta
l E

la
p

se
d

 T
im

e
(S

ec
s)

Figure 14: Query Batching -- 8 Clients X 10 Queries

6. Summary

In this paper we have described how the Paradise
database system was extended to support the execution
of queries against image data sets stored on magnetic
tape. While our extensions to the Paradise storage
engine (i.e. the SHORE storage manager) emphasized
the transparent access to tape-resident storage volumes,
the main contribution of this paper is a set of techniques
that we developed to optimize tape accesses during

query execution. The techniques of object abstraction,
query pre-execution, cache-conscious tape scheduling,
and run-time, data-driven query scheduling were
demonstrated to be extremely effective in optimizing the
execution of queries accessing raster images on tertiary
storage in a single-user environment. When these
mechanisms are augmented with query batching, almost
a 30-fold performance improvement was obtained in a
multi-user environment. One of the biggest advantages
of query pre-execution and batching is its simplicity.
We were able to implement the techniques without
major modification of any of the higher level query
optimizer and operator code. This bottom-up reordering
and scheduling strategy enables us to preserve the
execution order of the original query plan, yet still
leaves room for new higher level efforts to further
optimize query execution in a top-down fashion.

Acknowledgments

We would like to thank Navin Kabra and Jignesh Patel
for patiently answering detail questions on the Paradise
query optimizer and query execution engine, and Kristin
Tufte to provide valuable comments on the initial draft
of this paper.

References
[1] D. DeWitt, N. Kabra, J. Luo, J. Patel and J. Yu. “Client

Server Paradise,” Proc. of the 20th VLDB Conference,
Santiago, Chile, 1994.

[2] J. Patel, J. Yu., et al. “Building a Scalable Geo-Spatial
DBMS: Technology, Implementation and Evaluation,” Proc.
of the 1997 SIGMOD Conference, May, 1997.

[3] B. Kobler and J. Berbert, “NASA Earth Observing System
Data Information System (EOSDIS),” Digest of Papers: 11th

IEEE Symposium on Mass Storage Systems, Los Alamitos,
1991.

[4] Quantum Corporation, “DLT-4000 Product Manual,”
1995.

[5] M. Carey, L. Haas and M. Livny. “ Tapes Hold data, Too:
Challenges of Tuples on Tertiary Store,” Proc. of the 1993
SIGMOD Conference, May, 1993.

[6] J. Gray. “MOX, GOX and SCANS: The Way to Measure
an Archive,” June 1994.

[7] R. Herring and L. Tefend. “Volume Serving and Media
Management in a Networked, Distributed Client/Server
Environment,” Proc. 3rd Goddard Conf. Mass Storage
Systems and Technologies, NASA Con. Publication 3262,
1993.

[8] M. Olson. “Extending the POSTGRES Database System to
Manage Tertiary Storage,” Master’s Thesis, EECS,
University of California at Berkeley, May, 1992.

[9] S. Sarawagi. “Query Processing in Tertiary Memory
databases,” Proc. of the 19th VLDB Conference,
Switzerland, September, 1995.

[10] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith.
“The SEQUOIA 20000 Storage Benchmark,” Proc. of the
1993 SIGMOD Conference, May, 1993.

[11] J. Gray, et. al. “The Sequoia Alternative Architecture
Study for EOSDIS”, NASA, October 1994.

[12] E. Shekita, M. Carey, “A Performance Evaluation of
Pointer-Based Joins,” Proc. Of the 1990 SIGMOD
Conference, May, 1990.

[13] T. Keller, G. Graefe, D. Maier, “Efficient Assembly of
Complex Objects,” Proc. of the 1991 SIGMOD Conference,
May, 1991.

[14] J. Kohl, C. Staelin and M. Stonebraker. “Highlight: Using
a Log-Structured Files System for Tertiary Storage
management,” Proc. Winter USENIX 1993, pages 435-447,
San Diego, CA, January 1993.

[15] D. Ford and J. Myllymaki. “A Log-Structured
Organization for Tertiary Storage,” Proc. of the 12th

Conference on Data Engineering.

[16] M. Rosenblum and J. Ousterhout. “The Design and
Implementation of a Log-Structured File System,” ACM
Trans. Computer System, 10(4):26-52, February 1992.

[17] R.Grossman, D. Hanley and X. Qin,. “Caching and
Migration for Multilevel Persistent Object Stores,”
Proceedings of the 14th IEEE Computer Society Mass
Storage System Symposium, Sept. 1995.

[18] J. Li and C. Orji. “I/O Optimization Policies in Tape-
Based Tertiary Systems,” Tech Report, Florida International
University.

[19] B. Hillyer and A. Silberschatz. “Random I/O Scheduling
in On-line Tertiary Storage Systems,” Proc. of the 1996
SIGMOD Conference, May, 1995.

[20] L.T. Chen, D. Rotem. “Optimizing Storage of Objects on
Mass Storage Systems with Robotic Devices,” Algorithms
for Data Structures, Spring V, 1994.

[21] L.T. Chen, R, Drach, M. Keating, S. Louis, D. Rotem and
A. Shoshan. “Efficient Origination and Access of Multi-
Dimensional Datasets on Tertiary Systems,” Information
Systems Journal. April, 1995.

[22] S. Sarawagi and M. Stonebraker. “Single Query
Optimization for Tertiary Memory,” Proc. of the 1994
SIGMOD Conference, May, 1994.

[23] J. Myllymaki and M. Livny. “Joins on Tapes:
Synchronizing Disk and Tape Join Access,” Proc. of the
1995 SIGMETRICS Conference, Ottawa, Canada.

[24] J. Myllymaki and M. Livny. “Efficient Buffering for
Concurrent Disk and Tape I/O,” Proceedings of
Performance '‘96 - The International Conference on
Performance Theory, Measurement and Evaluation of
Computer and Communication Systems, October 1996.

[25] M. Stonebraker. “Managing Persistent Objects in a Multi-
Level Store,” Proc. of the 1991 SIGMOD Conference, May,
1991.

[26] J. Fine, T. Anderson, K. Dahlin, J. Frew, M. Olson, D.
Patterson. “ Abstract: A Latency-Hiding Technique for High
Capacity Mass-Storage Systems,"” Sequoia 2000 Project
Report 92/11, University of California, Berkeley, 1992.

[27] S. Sarawagi and M. Stonebraker. “Reordering Query
Execution in Tertiary Memory Databases,” Proc. of the 20th

VLDB Conference, India, September, 1996.

[28] M. Carey, D. DeWitt, M. Franklin, N. Hall, M.
McAuliffe, J. Naughton, D. Schuh, M. Solomon, C. Tan, O.
Tsatalos, S. White and M. Zwilling. “Shoring up Persistent
Objects,” Proc. of the 1994 SIGMOD Conference, May,
1994.

[29] J. Yu and D. J. DeWitt. “Processing Satellite Images on
Tertiary Storage: A Study of the Impact of Tile Size on
Performance,” 5th NASA Goddard Conference on Mass
Storage Systems and Technologies, September, 1996.

