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Abstract

This paper presents a new strategy for increasing the availability of data in multi-processor, shared-nothing
database machines. This technique, termed chained declustering, is demonstrated to provide superior performance
in the event of failures while maintaining a very high degree of data availability. Furthermore, unlike most earlier
replication strategies, the implementation of chained declustering requires no special hardware and only minimal
modifications to existing software.

1. Introduction

While a number of solutions have been proposed for increasing the availability and reliability of computer

systems, the most commonly used technique involves the replication of processors and mass storage [Borr81,

Jone83, Kast83]. Some systems go one step further replicating, not only hardware components, but also software

modules, so that when a hardware or software module fails, the redundant software modules can continue running

the application software [Borr81]. The result is that application programs are isolated from almost all forms of

failures.

For database applications, the availability of disk-resident data files is perhaps the major concern. One

approach for obtaining high availability is to replicate data items on separate disks attached to separate processors

[Borr 81, Tera85]. When one copy fails, the other copy can continue to be used. Unless both copies fail at the same

time, the failure of a single copy will be transparent to users and no interruption of service will occur. An alterna-

tive approach is to use an array of disks and store the data and the redundant error detection and correction informa-

tion (usually, parity bytes) on different disk drives [Kim86, Patt88]. When errors are discovered, the redundant

information can be used to restore the data and the application program can continue using the data with minimum

interruption. The advantage of the first approach is higher availability and better performance for transaction-

oriented database applications. The merit of the second approach is that it uses less disk space (i.e., less redundant

information is stored) and potentially provides higher I/O bandwidth for large block transfers. While the identical

copy scheme (which is employed by both Tandem and Teradata in their systems) has been used commercially, the

suitability of the second approach for database applications is still under investigation.

Throughout this paper, we focus our attention on multiprocessor database machines that employ a "shared-

nothing" architecture [Ston86]. In such systems, each processor has its own main memory, processors communicate

through an interconnection network, and one or more disks are connected to each processor.

While, traditionally, the performance of a computer system is measured in terms of both response time and

throughput, in a multiprocessor system that provides resiliency from hardware and software failures, performance
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can be measured in two different operating modes: the normal mode, with no failed components1, and the failure

mode, in which one or more processors or disks have failed. In the normal mode of operation, the application of

both intra and inter query parallelism has proven successful at improving the performance of database management

system software [Tera85, DeWi86, Livn87, Tand87, DeWi88]. However, when a failure occurs, balancing the

workload among the remaining processors and disks can become difficult as one or more nodes2 (processor/disk

pairs) must pick up the workload of the component that has failed. In particular, unless the data placement scheme

used allows the workload of the failed node to be distributed among the remaining operational nodes, the system

will become unbalanced and the response time for a query may degrade significantly even though only one, out of

perhaps a thousand nodes, has failed. In addition, the overall throughput of the system may be drastically reduced

as a bottleneck may form.

For multiprocessor, shared-nothing database machines with replicated data, the application of horizontal parti-

tioning (ie. declustering) techniques [Ries78, Tera85, DeWi86, Livn87] facilitates the successful application of inter

and intra query parallelism in the normal mode of operation. None of the existing availability techniques, however,

are able to fully3 balance the workload when failures occur. In this paper we present a new declustering technique,

termed chained declustering, for managing replicated data. This new technique is capable of providing both high

availability in addition to being able to fully balance the workload among the operational nodes in the event of a

failure. To balance the workload in the failure mode, a "static" load balancing algorithm has been designed in con-

junction with the chained declustering scheme. This algorithm predetermines the active fragments of the primary

and backup copies of each relation and directs data accesses to these fragments in a manner that will fully balance

the workload in both modes of operation. The active fragments are initially designated at the time of database crea-

tion and are reassigned when node failures occur.

In the next section, related research dealing with replication is presented. The chained declustering strategy is

described in Section 3 along with the associated data placement algorithms. The operation of the static load balanc-

ing scheme is described in Section 4. Section 5 contains a comparison of the availability and performance of the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 For the remainder of this paper, we will focus our attention only on hardware failures and will ignore software failures.
2 We assume that, in the absence of special purpose hardware (ie. dual ported disks and disk controllers), the failure of a processor control-

ling one or more disks renders the data on these disks unavailable.
3 Assume that a relation is declustered over N disks. We call a data replication method fully balanced if the workload can be evenly distri-

buted over N-i disks when i disks fail.
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chained declustering strategy with existing availability techniques. Our conclusions and future research directions

are contained in Section 6.

2. Related Availability Strategies

In this section, we briefly describe several existing techniques for improving data availability including the

use of mirrored disks [Borr81], data clustering [Tera85], and disk arrays with redundant check information [Patt88].

The mirrored disk and declustering strategies employed, respectively, by Tandem and Teradata, both maintain two

identical copies of each relation. Bubba [Cope88] also employs two copies of each relation but stores the second

copy as a combination of inverted indices over the first copy plus a remainder file containing the uninverted attri-

butes. RAID and SDI [Kim86] employ error correcting techniques that can be used to rebuild the database in the

event of a disk failure.

Each of these strategies is able to sustain a single disk failure and thus provides resiliency to disk failures.

With the Bubba, Tandem, and Teradata schemes, the remaining copy can continue to be used when the primary

copy fails, while in RAID and SDI, data on the remaining disks can be accessed and manipulated to satisfy data

requests for data stored on the failed drive. In the sections below, we will describe Tandem’s mirrored disk scheme,

Teradata’s data clustering scheme, and RAID’s data placement scheme in additional detail.

2.1. Tandem’s Mirrored Disks Architecture

The hardware structure of a Tandem system [Borr81] consists of one or more clusters that are linked together

by a token ring. Each cluster contains 2 to 16 processors with multiple disk drives. The processors within a cluster

are interconnected with a dual high speed (˜20 Mbyte/sec) bus. Each processor has its own power supply, main

memory, and I/O channel. Each disk drive is connected to two I/O controllers, and each I/O controller is connected

to two processors, providing two completely independent paths to each disk drive. Furthermore, each disk drive is

"mirrored" (duplicated) to further insure data availability.

Relations in Tandem’s NonStop SQL [REF] system are generally declustered across multiple disk drives. For

example, Figure 1 shows relation R partitioned across four disks using the mirrored disk strategy. RP(i) represents

the i-th horizontal fragment of the first copy of R and RB(i) stands for the mirror image of RP(i). As shown in Fig-

ure 1, the contents of disks 1 and 2 (and 3 and 4) are identical.
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Figure 1: Data Placement with Tandem’s Mirrored Disk Scheme.

Disks are accessed by a mechanism known as I/O "process-pairs". A process pair consists of two cooperating

processes which execute on the two processors physically connected to a specific mirror-disk pair. One of the

processes, designated the "primary" process, controls the disk and handles all I/O requests to it. The other process

serves as "backup" to the primary process and is activated should a failure occur in the primary process. Read

operations can be directed (by the I/O controller) to either drive in the mirrored-pair while write operations must be

directed to both both drives in order to keep the contents of both disks identical, causing the two disk arms to

become synchronized [REF].

When a disk in a mirrored pair fails, the remaining disk can assume the workload of the failed drive. Unless

both disks in a mirrored pair fail at the same time, data will always be available. The actual impact of a drive failure

on the performance of the system depends on the fraction of read and write operations [REF]. If most I/Os are read

operations, losing a drive may result in doubling the average I/O time because only one disk arm is available. On

the other hand, if most I/Os are write operations, the impact of a disk failure may be minimal.

The impact of the failure of a processor will, however, almost always have a significant negative impact on

performance. Consider the failure of processor P1 in Figure 1. While the data on disks 1 and 2 will remain avail-

able (because the mirrored pair is dual ported), processor P2 will have to handle all accesses to disks 1 and 2 as

well as disks 3 and 4 until processor P1 is repaired. If P2 is already fully utilized when the failure occurs, the

response time for queries that need to access data on either pair of drives may double if the system is CPU bound.
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2.2. Teradata’s Data Clustering Scheme

In the Teradata database machine [Tera85], the processors (and the disk drives attached to them) are subdi-

vided into clusters. Each cluster contains from 2 to 16 processors and each processor may have one or two disk

drives.4 Relations are declustered among the disk drives within one or more clusters by hashing on a "key" attribute.

(The tuples of a relation stored on each disk are termed a fragment.) Optionally, each relation can be replicated for

increased availability. In this case, one copy is designated as the primary copy and the other as the backup or fall-

back copy. Fragments of the primary and backup copies are termed primary and backup fragments respectively.

Each primary fragment is stored on one node. For backup fragments, Teradata employs a special data placement

scheme. If the cluster size is N, each backup fragment will be subdivided into N-1 subfragments. Each of these

subfragments will be stored on a different disk within the same cluster other than the disk containing the primary

fragment. When a processor failure occurs, this strategy is able to do a better job of balancing the load than the mir-

rored disk scheme since the workload of the failed processor will be distributed among N-1 processors instead of a

single processor. However, this improvement in load balancing is not without cost. As we will demonstrate in Sec-

tion 5, the probability of data being unavailable increases proportionately with the size of the cluster.5

----
----

----
---- TB(9)TB(5)TB(1)

TP(4), TP(8), TP(12)

TB(11)
TB(10)

Disk 4

TP(3), TP(7), TP(11)

TB(12)
TB(6)

Disk 3

TP(2), TP(6), TP(10)

TB(8)
TB(7)

Disk 2

TP(1), TP(5), TP(9)

TB(4)
TB(3)

TB(2)

Disk 1

Cluster of 4 disks

Figure 2: Teradata’s Data Clustering Scheme.

Figure 2 illustrates Teradata’s data replication scheme. Relation R is declustered over a cluster consisting of

four processors and disks by hashing on the "key" attribute to produce hash values ranging from 1 to 12. As shown

in Figure 2, tuples from the primary copy which hash to values 1, 5, and 9 are placed on disk 1 while tuples from the

backup copy having have the same hash values (1, 5, and 9) are stored on disks 2, 3 and 4, respectively. TP(i)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4 Actually, if two disk drives are used, they are treated as one logical drive.
5 Data will be unavailable if any two nodes in a cluster fail.
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stands for all tuples from the primary copy whose partitioning attribute value hash to value i and TB(i) is the backup

copy of TP(i).

During the normal mode of operation, read requests are directed to the fragments of the primary copy and

write operations result in both copies being updated. In the event of a node failure that renders a fragment of the

primary copy unavailable, the corresponding fragment of the backup copy will be promoted to become the primary

(active) fragment and all data accesses will be directed to it.

2.3. RAID’s Data Storage Scheme

In the RAID data storage scheme [Patt88, Gibs89], an array of small, inexpensive disks is used as a single

storage unit termed a group. Instead of replicating data on different drives, this strategy stores check (parity) bytes

for recovering from both random single byte failures and single disk failures. This scheme interleaves (stripes) each

data block, in units of one disk sector, across multiple disk drives such that all the sectors in a single block can be

accessed in parallel, resulting in a significant increase in the data transfer rate.

Figure 3 illustrates an example of data placement in a RAID6 group with five disks. Si,j represents the j-th

sector of the i-th data block and Ci is the check byte sector for block i. Basically, Ci is formed by computing the

"xor" (byte wise) of all data sectors in the block. As illustrated by the shaded sectors in Figure 3, the check byte

sectors in a RAID group are distributed evenly among the disk drives.

If no disks have failed, reading one sector of a block requires access to only a single disk. Writing a sector,

on the other hand, requires 4 disk accesses: a read and write of the sector being updated plus a read and write of the

check sector for the corresponding block. When a disk failure occurs, however, every disk in the same RAID group

must be accessed each time an access is attempted to a sector on inoperative disk drive. Recovering the value of

each byte of a sector from the failed drive proceeds as follows. First, the corresponding bytes from the other sectors

in the block (except the check sector) are "xor’d" with each other. The resulting byte is compared bitwise with the

corresponding byte from the check sector for the block. If the two bits match, the failed bit is a 0. Otherwise, it is a

1.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6 [Patt88] presents 5 levels of RAID. The scheme described here is the level 5 RAID. Except for the end-of-fragment parity byte, level 3

RAID is the same as the SDI [Kim86].
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Figure 3: Data placement in RAID, each rectangle represents a physical sector.

One potential concern with the RAID scheme is its inherent reliability. When large numbers of disks are con-

nected to form a single system, the increased number of disks and support hardware (cables, controllers, etc.) will

increase the probability of a component failure which in turn increases the probability of unavailable data. This

concern is supported by the results in [Schu88], where for a 56-disk RAID system, the probability of data being una-

vailable as the result of a non-media failure was shown to be as much as a factor of 30 higher than if only media

failures are considered.

3. Chained Declustering Strategy

While each of the techniques presented in the previous section significantly improves the probability of data

remaining available in the event of a failure, each has one or more significant limitations. While the use of mirrored

disk drives offers the highest level of availability (as will be shown in Section 5), it does a poor job of distributing

the load of a failed processor. Teradata’s scheme provides a tradeoff between availability and performance in the

event of a failure. As the cluster size is increased, the probability of two failures rendering data unavailable

increases while the imbalance in workloads among the processors in the event of a failure decreases. RAID

emphasizes the importance of disk space over performance.
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In this section, we describe a new data replication technique, termed chained declusteringwhich offers both

high availability and excellent load balancing in the event of a failure. Chained declustering, being an "identical

copy" based scheme, does however require more disk space than the RAID strategy. In the following discussion,

we assume that each processor has only a single disk attached and the term "node" is used to represent a processor-

disk pair.

3.1. Data Placement Algorithm for Chained Declustering

In the chained declustering strategy, nodes are divided into disjoint groups called relation-clusters. The

tuples of each relation in the database are declustered across the disk drives of one relation cluster. The chained

declustering strategy maintains two physical copies of each relation. The first copy (termed the primary copy) is

declustered over all disks in a relation-cluster using one of Gamma’s three partitioning strategies (hashed, range, or

round-robin) [DeWi86]. The second copy (termed the backup copy) is declustered using the same partitioning stra-

tegy but the corresponding fragments from both copies are stored on different nodes. The fragments are distributed

among the disks using the following algorithm:

Assume that there are a total of M disks numbered from 1 to M. For every relation R, the i-th
fragment of the primary copy is stored on the {[i-1+C(R)] mod M + 1}-th disk drive, and the i-
th fragment of the backup copy will be stored on the {[i+C(R)] mod M + 1}-th7 disk drive;
insuring that the primary and backup fragments are placed on different disk drives.

The function C(R) is devised to allow the first fragment of relation R to be placed on any disk within a relation-

cluster. We name this data replication method chained declusteringbecause the disks are linked together, by the

fragments of a relation, like a chain.

Figure 4 illustrates the data placement scheme with chained declustering where the size of the relation-cluster

is eight and C(R) is 0. RP(i) and RB(i) stand for the i-th fragment of the primary and backup copy, respectively. In

the figure, RP(1) and RB(1) contain identical data, and so on.

For systems having relatively few disks, it is reasonable to let the relation-cluster contain all the disks in the

system. However, for systems with a large number of disks (e.g. 1000) it will generally not be practical to decluster

a relation over all the drives as the overhead of initiating and committing transactions will generally overshadow the

benefits obtained through the use of parallelism [Smith Sigmod 88 REF]. In this situation, the set of disks can be
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7 A generalized formula will be {[i-1+k+C(r)] mod M + 1} where 0 < k < M and the greatest common divisor of M and k,
GCD(M, k), is equal to 1.
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Figure 4: Replicated Data Placement in the Chained Declustering Scheme.

divided into groups and each group will form a relation-cluster. The data placement algorithm described previ-

ously can be modified to adapt to this change by adding a term to represent the starting disk number of the relation-

cluster. In addition, when the number of disks in a relation-cluster is relatively large (e.g. 100-200 disks), the disks

in a relation-cluster can be divided into even smaller groups termed chain-clusters, which are then the unit of load

balancing in the event of a node failure. The data placement algorithm described earlier can be further modified to

accommodate this grouping mechanism.

In summary, the chained declustering algorithm declusters a relation over any M disks out of a total of L disks

(2 <= M <= L), and "chains" groups of N disks (2 <= N <= M). For special cases of 2 <= N <= 16, chained declus-

tering is similar to, but, as will be demonstrated later, provides higher data availability than Teradata’s cluster

scheme. Figure 5 illustrates data placement for the chained declustering scheme with N = 4 and L = M = 8. As

shown in the figure, the first four fragments are "chained" within the first four disks and the last four fragments are

"chained" in disks 5 through 8.

RP(8)RP(7)RP(6)RP(5)

RP(4)RP(3)RP(2)RP(1)

RB(7)RB(6)RB(5)RB(8)

RB(3)RB(2)RB(1)RB(4)

Disk 4Disk 3Disk 2Disk 1

Disk 8Disk 7Disk 6Disk 5

Figure 5: RP(i) and RB(i) are the i-th fragments of the primary and backup copy, respectively.
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3.2. Availability and Load Balancing

With current disk technology, the mean time to failure for a disk drive is between 3 and 5 years. If we assume

that failures are independent, that failure rates are exponentially distributed8 with a mean of 3 years, and that the

time to repair/replace a disk and restore its contents is 5 hours, then for a pair of disks (M = 2), the probability, p, of

both disks failing at the same time is about 0.0002. For M = 8, M = 32, M = 250, and M = 1000, the probability of

two disks failing at the same time will be 0.0014, 0.0062, 0.046, and 0.17, respectively. If the failure of any two

disks at the same time causes data to be unavailable, some data will be unavailable once every 15.1 years9 when M

= 32, once every 3.2 months when M = 250, and once every 6.4 days when M = 1000. With chained declustering,

however, a relation will be unavailable only if two (logically) adjacent disks within a chain-cluster fail simultane-

ously, or if the second disk fails while the first one is being replaced. The probability of any data being unavailable

is thus 0.0004 for all M > 2. As a result, for a relation declustered over 1000 disks using the chained declustering

strategy, some data will be unavailable once every 7.5 years instead of 6.4 days.

The unique capability of the chained declustering scheme is that it is able to balance the workload among all

disk drives during both the normal and failure modes of operation. Figure 6 illustrates the idea of how the workload

is balanced in the event of a node (processor or disk) failure. The fragments from the primary copy are initially

designated as the active fragments (RP(i) and RB(i) are the i-th fragments of the primary copy and backup copy of

the relation R, respectively). From part (ii) in Figure 6, one can see that when a node fails, its workload is shifted to

its backup node as in the case of RP(2). Consequently, the active fragments for relation R are dynamically reas-

signed such that the workload is uniformly distributed among all remaining nodes. As illustrated by part (ii) of Fig-

ure 6, the workload of node 3 is increased only by 14.3%. If the active fragments had not been rearranged, the work-

load of node 3 would have instead increased by 100%10. As shown in parts (ii) and (iii) of Figure 6, the fraction of

the primary and backup fragments that a node is "responsible for" varies depending on exactly which node has

failed.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8 The exponential distribution has an important property, known as the memoryless property.
9 This considers disk failures only. If failures of all other components which may cause an unavailability are included, the probability of

unavailable data may be higher.
10 In this case, node 3 would be responsible for both RP(3) and RB(2) and its work load will be increased by 100%. This analysis assumes,

of course, that the workload was uniformly distributed among the nodes before the failure occurred.
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(iii) Reassignment of Active Fragments after Node 5 Fails.
Figure 6: Assignment of the Active Fragments before and after a Node Failure.

What makes this scheme even more attractive is that the reassignment of active fragments incurs neither disk

I/O nor data movement. Only some of the bound values and pointers/indices in a memory resident control table

must be changed and this process can be done very quickly and efficiently. If queries do not exhibit a uniform

access pattern, the chained declustering scheme also allows dynamic load balancing without actually moving the

physically stored data. Since the data fragments are "chained" together, the work of one node can be easily reas-

signed to either of its neighbors. The technique of dynamic load balancing is currently under investigation and will

not be discussed further in this paper.

4. Load Balancing Algorithms for Chained Declustering

The example shown in Figure 6 provides a simplified view of how the chained declustering mechanism actu-

ally balances the workload in the event of a node failure. In reality, queries cannot simply access an arbitrary frac-

tion of a data fragment because data may be clustered on certain attribute values, indices may exist, and the query

optimizers may generate different access plans. For example, Gamma [DeWi86] provides the user with three

declustering alternatives: range, hash, and round-robin partitioning. For each of these partitioning alternatives,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

10 The 7
nhh of a fragment (RP(i) or RB(i)) for a node is

the fraction of responsibility of the i-th fragment at that node.
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Gamma also supports five storage organizations for each relation11:

(1) a clustered index on the partitioning attribute,

(2) a clustered index on the non-partitioning attribute,

(3) a non-clustered index on the partitioning attribute,

(4) a non-clustered index on a non-partitioning attribute,

(5) heap (no index).

In addition, three alternative access plans are generated by Gamma’s query optimizer for processing tuples. There

are: (1) utilize the clustered index, (2) utilize a non-clustered index, and (3) a sequential file scan.

The problem now is to design a load balancing algorithm for the chained declustering mechanism that handles

all possible combinations of partitioning methods, storage organizations, and access plans. The keys to the solution

are the notion of a responsible rangefor indexed attributes, the use of query modification techniques[Ston75],

and the availability of an extent mapfor relations stored as a heap. In the following sections, we will describe these

techniques in more detail and illustrate how they are used.

4.1. Responsible Range and Extent Map

For each indexed attribute, W, we term the range of values that a node is responsible for its responsible

range on attribute W (or its responsible W range). The responsible range for each fragment is represented by the

interval of two attribute values and is stored in a table termed the active fragment tablewhich is maintained by the

query scheduler. The following formulas are used to compute the responsible range for each relation with one or

more indexed attributes. When node S fails, node i’s responsible range on attribute W for a primary fragment rP is:

R
QWl(rP), Wh(rP) − f(i,S) * (Wh(rP)−Wl(rP)+1) H

P, where f(i, S) = M−1
[M−(i−S+1)] mod Mhhhhhhhhhhhhhhhhhh ,

and the responsible range on attribute W for a backup fragment rB is:

I
LWl(rB) + g(i,S) * (Wh(rB)−Wl(rB)+1), Wh(rB) H

P, where g(i, S) = M−1
[M−(S−i+1)] mod Mhhhhhhhhhhhhhhhhhh .

M is the total number of nodes in the relation-cluster. Wl(x) and Wh(x) correspond to the lower and upper bound

values of attribute W for fragment x. For example, if M=4 and S=2, then f(3,S)= 3
2hh . Assuming that Wl(rP) is 61

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
11 All fragments of a relation must have the same "local" storage organization.
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and Wh(rP) is 90, when node 2 fails the responsible range of node 3 on attribute W for its primary fragment rP is

R
J
Q
61, 90 − 3

2hh * 30
H
J
P
= R

Q61, 70
H
P.

When a relation is stored as a heap, each fragment is logically divided into M-1 extents and the physical disk

address of the first and last page in each extent is stored in a table termed the extent map. The responsible ranges

(extents) of fragments without any indices are marked by two extent numbers (e.g. extents 1 to 3). The responsible

range of node i for a fragment is determined by the following formulas:

For the primary fragments, extents R
QE1 , E(M−1)−f(i,S)

H
P

For the backup fragments, extents R
QE1+g(i,S) , EM−1

H
P.

Where Ei is the i-th extent of a fragment and functions f and g are as previously defined.

Figure 7 illustrates the structure of an extent map. As shown in Figure 7, the extent map for a fragment (x) of

any relation R at any node A is an array of M-1 records. Each record has two fields which contain the addresses of

the first and last pages of an extent. When the sectors of a fragment are uniformly distributed over M-1 extents, the

j-th extent will consist of sectors (j-1)* (M−1)
Thhhhhh+1 to j* (M−1)

Thhhhhh , where T is the total number of sectors occupied by

fragment x at node A. Figure 8 illustrates the responsible extents of each node before and after a node failure for a

relation that is stored as a heap.

In the normal mode of operation, primary fragments are designated as the active fragments and the responsi-

ble ranges are set accordingly - either to the range of an indexed attribute or to extents 1 to M-1 (M is the number of

nodes in the relation cluster). When a node failure occurs, the responsible ranges and, thus, the active fragments are

tailtailtail headheadhead

First sector

Extent 1 Extent 2 Extent 3

10 th sector 20 th sector

11 th sector 21 th sector

Last sector

Figure 7: An example of an extent map with M=4 and T=30.
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Figure 8: Active Fragment Table for a Relation Stored as a Heap.

reassigned. In this event, the active fragments will consist of both primary and backup fragments at each of the

operational nodes. The reassignment of the responsible ranges in the event of a node failure is done in such a way

that the sizes of the active fragments for each of the remaining nodes within the relation-cluster12 will be increased

by M−1
1hhhhh th. This, in turn, will increase the workload of all active nodes within the relation-cluster by M−1

1hhhhh th when

queries exhibit a uniform access pattern to the nodes. If queries exhibit a non-uniform access pattern, the functions

f and g defined above can easily be modified to capture the skewed data access pattern.

This section illustrated how the responsible ranges and active fragments are determined and marked. In the

next section, we will show how this information is used by the query scheduler to modify and process queries in the

event of a node failure.

4.2. Load Balancing Algorithm

In order to insure that only the active fragments are accessed when a failure occurs, some queries must be

modified before being sent to local nodes for processing. For indexed relations, two query modification techniques

are used. The first technique modifies the range of a selection predicate to reflect the responsible range of a node

before sending the query to the node. This technique is used when an index is used to retrieve qualifying tuples.

The second query modification technique adds a selection predicate to a query based on the responsible range of the

attribute on which the clustered index exists. This technique is used when a sequential file scan is selected by the

query optimizer.

Query modification techniques, however, can only be applied to indexed relations. For relations stored as a

heap, a different technique is needed to ensure that only the appropriate fragments of the primary and backup copies
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

12 Or the chain-cluster, if the relation cluster has been divided into two or more chain-clusters.
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are accessed. In this situation, the extent map described in Section 4.1 will be used.

Algorithm A: Changing the Selection Predicate

For selection queries in which an index on the qualified attribute is used to retrieve qualifying tuples, the load

balancing algorithm employs query modification techniques as follows:

The query scheduler first computes the intersection of the range of the selection predicate on W and the
responsible range of node A on W.. If the intersection of the two ranges is non-empty, a query will be
modified to have the intersection as its new range, and the modified query is sent to the node A. An exact
match selection query is treated as a special case of range queries where the range of the selection predicate is
a single point.

Algorithm B: Adding a Selection Predicate

When a suitable index is not available, the query must be processed by sequentially scanning all active frag-

ments. Since no data is moved when the active fragments are reassigned after a node fails, the only way to distin-

guish the active and passive fragments of the primary and backup copies at a local node is through the range of the

attribute with the clustered index. Assuming that a clustered index exists on attribute X, the load balancing algo-

rithm works as follows:

For each active fragment i of a node A, fetch its responsible range for attribute X (e.g Xl(i) to Xh(i)). A selec-
tion predicate on attribute X corresponding to the current responsible X range of fragment i (i.e. Xl(i) ≤ R.X ≤
Xh(i)) is appended to the original query before the query is sent to node A. After receiving a query, node A
retrieves tuples sequentially from Xl(i) to Xh(i) because the tuples in its fragment are sorted on their X attribute
values.

Algorithm C: Using the Extent Map

When relations are stored as a heap, the only way to retrieve tuples is via a sequential file scan. The active

fragment table and the extent map described in Section 4.1 will be used for determining the responsible ranges

(extents) and, thus, the active fragments in the event of a node failure. Under this condition, queries will be pro-

cessed in the following manner:

With this type of query, the addresses of the first and last pages in an extent (which are stored in the extent
map) are used by a node to perform a sequential scan on the extent. Upon receiving a query from the query
scheduler, a node will sequentially retrieve tuples from the appropriate extents. In the normal mode of opera-
tion, a node will access only the extents of the primary fragment. In the case of a node failure, the active frag-
ments will consist of both the primary and backup fragments. Therefore, extents from both fragments will be
processed. The retrieval process for a node is completed when all tuples within its responsible range have been
accessed.
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4.3. Examples Applications of the Load Balancing Algorithms

To illustrate the operation of the load balancing algorithm, assume that relation R, with attributes X, Y and Z,

is horizontally partitioned using the chained declustering strategy, that X is always used as the partitioning attribute,

and that attributes X and Z have values ranging from 1 to 120 and 1 to 30, respectively. We further assume, without

the loss of generality, that there are four nodes in the system, that the relation-cluster and the chain-cluster both

consist of four nodes (M=4), and that the second node (S=2) has failed.

In the following examples, a B subscript (e.g. RB) is used to indicate that the fragment from the backup copy

of relation R must be processed. A range variable without a subscript (e.g. R.Z) indicates that the primary fragment

of the relation is to be used. The examples show how the load balancing algorithms described in the previous sec-

tion are used when node 2 fails.

Example #1: Clustered index on range partitioning attribute is used to retrieve the qualified tuples.

Assume that relation R is range partitioned on attribute X and that a clustered index has also been constructed

on X. The primary and backup fragments of relation R at a local node will have disjoint sets of X attribute values.

Figure 9 illustrates the assignment of responsible ranges (active fragments) for attribute X before and after the

failure of node 2.
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i: Before any node failure.
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ii: After the failure of node 2.

Figure 9: An example of an active fragment table for attribute X.
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For exact match selection queries on attribute X (e.g. R.X = constant), the access plan will specify that the

clustered index is to be used to access relation R. At run-time, the query scheduler will use the active fragment table

to direct the query to the appropriate node(s) for execution. For example, given the active fragment (responsible

range) assignment indicated in Figure 9, queries with predicates R.X = 43, R.X = 81, and R.X = 115 will be directed

respectively to nodes 2, 3, and 4 in the normal mode of operation and will be directed to nodes 3, 4, and 1, respec-

tively, in the event that node 2 has failed.

In the case of range queries on attribute X (e.g. c1 ≤ R.X ≤ c2), when a node has failed, the query scheduler

will modify the ranges of each query before sending the query to the nodes where the corresponding active frag-

ments are stored (ie., Algorithm A in Section 4.2 is employed). Figure 10 illustrates how a query is modified13 after

the failure of node 2. In Figure 10, the range of the query is from 50 to 80. The responsible X range of nodes 3 and

4 are from 31 to 70 and from 71 to 110 (from Figure 9), respectively. The intersection of "50 to 80" (the query

range) and "31 to 70" (node 3’s responsible range) is "50 to 70", so the original query is modified to "R.X ≥ 50 and

R.X < 70"14 before it is sent to node 3. The query modification process for node 4 is done in a similar fashion. For

node 1, the intersection of the query range and the responsible X range is empty and the query (neither the original

nor the modified version of it) will not be sent to it. At nodes 3 and 4, the modified query will be applied to the

active fragments stored at each site.

retrieve .... retrieve ....
where R.X ≥ 50 and R.X < 80 where R.X ≥ 50 and R.X ≤ 70

i: Original query iii: Modified query for node 3

retrieve ....
where R.X ≥ 71 and R.X < 80

ii: node 1 is not responsible for the query iv: Modified query for node 4

Figure 10: An Example of Query Modification.

Example #2: Non-clustered index on non-partitioning attribute is used to retrieve the qualified tuples.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
13 To simplify the explanation, the example uses the original query. In an actual implementation, the algorithm will modify the query exe-

cution plan which is generated by the query optimizer.
14 This is a special case. The R.X here means R.X and/or RB.X. Because the two fragments from the same relation are disjoint and or-

dered at a local node, the index(clustered) trees for these two fragments can be joined together and form a single tree.
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Assume that a non-clustered index is constructed on attribute Z and that attribute Z has values ranging from 1

to 30. Figure 11 depicts the responsible range of the remaining three nodes after node 2 has failed. Because each of

the fragments have the same range of Z values, after the reassignment, the responsible range of each of these nodes,

will still be equal to the full range of Z attribute values. Thus, the query must be sent to all active nodes for process-

ing. At each site the responsible ranges for both the primary fragment and the backup fragment will vary, however,

depending on exactly which node has failed.

For range selection queries on attribute Z for which the access plan uses the non-clustered index, the query

scheduler will use Algorithm A from Section 4.2 to modify the query before it is sent to the appropriate nodes for

processing. Figure 12 illustrates how a range query is modified after the failure of node 2. The query is sent

unmodified to node 1 because the query range is a subrange of node 1’s responsible Z range for the primary frag-

ment while the intersection of the query range and node 1’s responsible Z range for the backup fragment is empty.

For node 4, the query range is again a subrange of its responsible Z range for the primary fragment but the intersec-

tion of the query range and its responsible Z range for the backup fragment is non-empty (from 11 to 14). As a

result, the query is modified to include both intersections before it is sent to node 4. The query modification for

node 3 can be done in a similar fashion and is not shown here. The subscript in RB serves to inform a node that the

fragment from the backup copy of relation R must be processed.
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i: Before any node failure.
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ii: After the failure of node 2.

Figure 11: An example of active fragment table for indexed attribute Z (relation not partitioned on Z).
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retrieve .... retrieve ....
where R.Z ≥ 6 and R.Z ≤ 14 where R.Z ≥ 6 and R.Z ≤ 10

or RB.Z ≥ 6 and RB.Z ≤ 14

i: Original query iii: Modified query for node 3

retrieve .... retrieve ....
where R.Z ≥ 6 and R.Z ≤ 14 where R.Z ≥ 6 and R.Z ≤ 14

or RB.Z ≥ 11 and RB.Z ≤ 14

ii: Original query for node 1 iv: Modified query for node 4

Figure 12: Query modification for range queries on non-partitioning attribute.

Example #3: Clustered index on hash partitioning attribute is used to retrieve the qualified tuples

In this example, we assume that relation R is hash partitioned on attribute X and that a clustered index has

also been constructed on X. With the hashed partitioning strategy as each tuple is loaded into the database a hash

function is applied to the partitioning attribute and the resulting value is used to select a storage unit. Currently, the

hash function used in Gamma generates 32-bit hash values when it is applied to the partitioning attribute, X, of a

tuple. The hash value, h(X), is then divided by the number of storage units, M, and the remainder, r(X), is used to

select a storage unit to store the corresponding tuple. The quotient, q(X), which has values ranging from 0 to qmax

(qmax = M
232−1hhhhhh ) is used to determine the responsible h(X) range for each fragment. In this case, the responsible

range of each active node consists of two values: the hash value of attribute X and the actual value of attribute X.

The hash value of attribute X is used by query scheduler to select the responsible node for exact match selection

queries while the actual X value is used when processing range queries and file scans.

In the normal mode of operation, the primary fragments are designated as the active fragments and the

responsible X range is set accordingly. The responsible ranges on h(X) are set to "0 to qmax" for all primary frag-

ments. When a failure occurs, the responsible X and h(X) ranges are recomputed for each fragment using the for-

mulas described in Section 4.1 (when recomputing the responsible range on h(X), 0 is substituted for Wl and qmax is

substituted for Wh). Figure 13 illustrates the assignment of responsible ranges before and after a node failure. As

before, we assume that there are 4(M=4) nodes, that the second node has failed, and that attribute X has values rang-

ing from 1 to 120. For purposes of this example, assume that the hash function h generates only a 16-bit hash value

(thus, qmax = 4
216−1hhhhhh= 16383). For simplicity we use "0 to 120" as the X range for all fragments. In practice,
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different fragments will have slightly different X ranges and each of them will be a subrange of "0 to 120".

For exact match selection queries on attribute X the query will be directed to a single node where it will be

processed using the clustered index. The query scheduler first applies the hash function to the constant X in the

selection predicate and the outcome, h(X), is divided by M to generate quotient q(X) and remainder r(X). r(X) indi-

cates where the qualified tuple(s) is stored and q(X) is used to select either the primary or the backup fragment

according to the responsible h(X) range. For example, if h(X=97) is equal to 30770, then q(X=97) will be equal to

4
30770hhhhhh = 7692 and r(X=97) will be equal to (30770 mod 4) = 2. r(X)= 2 indicates that the qualified tuple(s) is in

the third fragment (tuples hashed to r(X)= i are stored in the (i+1)-th fragment). Because the third fragment is

stored at two nodes (the primary copy is stored at node 3 and the backup copy is stored at node 4), q(X) is used to

select a node by comparing the responsible h(X) ranges of these two nodes for the third fragment. According to

Figure 13 (part ii), q(X) is within node 4’s responsible h(X) range for the third fragment ("5461 to qmax" for 3B), so

the query "R.X = 97"15 will be sent to node 4 for processing. Upon receiving a query, a local node will use the

clustered index to retrieve qualified tuple(s).
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i: Before any node failure. (qm = M
216−1hhhhhh = 16383)
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Responsible
X ranges [1,120] [81,120] failed [1,40] [1,120] [1,80] [41,120]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Responsible
h(X) ranges [0,qm] [10922,qm] failed [0,5460] [0,qm] [0,10921] [5461,qm]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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ii: After the failure of node 2.

Figure 13: Assignment of Responsible Ranges for Hash Partitioning Attribute X.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
15 Since the third fragment stored at node 4 is from the backup copy, the query will be modified to "RB.X = 97" before it is sent to node 4.



22

4.4. Summary

The idea behind the algorithm described in this section is to process queries against a set of active fragments

which are initially designated when the relation is created and are then reassigned when node failures occur. For a

given relation, different queries may use different active fragments, but the union of all active fragments used to

process a query is guaranteed to correspond to a complete copy of the relation. For each query, the query scheduler

selects the responsible node(s) based on the current assignment of active fragments, and each node retrieves only

those tuples within its responsible range.

Table 1 summarizes the operation of the load balancing algorithm for all possible combinations of partitioning

methods, storage organizations, and access plans.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
RANGE PARTITIONING Clustered on X Clustered on Y No indexiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

uses the clustered index A, f A, e N/Aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses a non-clustered index A, e A, e/g N/Aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses a file scan B, e B, e/g C, e/giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

HASH PARTITIONINGiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses the clustered index A, e/h A, e N/Aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses a non-clustered index A, e A, e/h N/Aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses a file scan B, e B, e/h C, e/hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ROUND ROBINiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses the clustered index A, e A, e N/Aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses a non-clustered index A, e A, e N/Aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
uses a file scan B, e B, e C, eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1: Summary of Load Balancing Algorithm (X is the partitioning attribute.)

A: modify query range based on the intersection of the responsible range and the original selection predicate of the

query

B: append a range selection predicate on the attribute with the clustered index

C: use extent map

e: send queries to all active nodes within the relation-cluster

f: send queries to limited nodes

g: select nodes based on X value if X is the qualified attribute

h: select node based on responsible h(X) range for exact match queries

N/A: not applicable
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5. Availability and Performance

While availability can be improved through the use of data replication and performance can be improved

through the use of declustering and parallelism, it is not a straightforward task to simultaneously achieve both

objectives in the event of processor or disk failures. The tension between these two objectives is illustrated by Fig-

ures 14 and 15 (which have been extracted from [Tera85]). Figure 14 illustrates that, for a system containing 32

nodes, as the cluster size is increased from 2 to 32 processors the mean time between cluster failures(MTTFc)

decreases dramatically. In other words, an increase in the cluster size reduces the probability that all data will be

available. On the other hand, Figure 15 demonstrates that larger cluster sizes have the beneficial effect of reducing

the increase in the workload on the remaining processors when a node in a cluster fails. As we will demonstrate

below, chained declustering is, however, able to resolve these conficts as the probability of data being unavailable

(as the result of two nodes failing) with chained declustering is independent of the cluster size.

MTTF c

16842

Cluster size in number of nodes(disks)

250

150

100

50

200

years

0

Figure 14: Mean Time Between Cluster Failures (2 failed nodes) vs. Cluster Size.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
A cluster size of 32 is not shown. The MTTFc is defined as two or more disks on different nodes in a cluster being down at the same time.
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Cluster size in number of nodes(disks)

Load
Factor

1.5

2.0

2 4 8 12 16

1.0

Figure 15: Excess Load on Cluster If One Node Fails vs Cluster Size.

5.1. Availability

For the purpose of the following availability and performance comparisons, we have made the following

assumptions:

- A relation is distributed across M disks,

- The size of a chain-cluster is also M,

- The cluster size of Teradata’s scheme is N,

- The group size of RAID is G,

Let n 1 be the number of ways that the first disk(out of M disks) can fail and let n 2 be the number of ways that a

second disk failure, together with the first failure, will result in data being unavailable. Then n 1 is the number of

possible combinations of selecting one out of M disks, i.e., n 1=
I
L 1
M M

O. n 2, however, depends on the data placement

scheme used.

With Teradata’s clustering scheme, if the second failure is in the same cluster as the first one, data will

become unavailable. n 2 is then
I
L 1
N −1 M

O = N-1. The case for RAID is similar. If the second failure is in the same

RAID group as the first failed disk, some data will become unavailable. So n 2 = I
L 1
G −1 M

O = G-1. For mirrored disks,

after the first failure, data will be unavailable only if the mirror image of the failed disk also fails. Because every

disk has exactly one mirror image, n 2 will be 1. In chained declustering, data will be unavailable only if two logi-
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cally adjacent disks fail, and since all disks have two neighbors, the number of different ways for this to happen, i.e.,

n 2, is equal to
I
L1
2 M

O = 2.

Let E be the total number of events for which the failure of two disks will cause data to become unavailable,

then for a system with M disks, E(Scheme)= n 1 * n 2. For the different schemes considered in this paper, their

respective E values are:

E(chained) = 2 *
I
L 1
M M

O = 2M,

E(mirrored)=
I
L 1
M M

O = M,

E(Teradata)=
I
L 1
M M

O *
I
L 1
N −1 M

O = M*(N-1),

E(RAID) =
I
L 1
M M

O *
I
L 1
G −1 M

O = M*(G-1),

Let P be the probability of any data being unavailable. Then P will be equal to E multiplied by p (the probability of

two disks failing at the same time), i.e. P(scheme) = E(scheme) * p.

As one can see from the analysis above, the mirrored disk scheme provides the highest degree of data availa-

bility while the chained declustering technique is second. Both of these schemes have a constant P value when M is

fixed. In contrast, the P value of Teradata’s clustering scheme varies significantly depending on the cluster size, N.

With Teradata’s scheme, if N=8, the probability of data being unavailable will be 350% higher than with the

chained declustering scheme. If N=32, it will be 1550% higher. RAID has the same availability as the Teradata

scheme if the group size, G, is equal to the cluster size, N. While Teradata suggests that its customers should select

a cluster size of 4 or 8 in order to achieve a reasonable balance between performance and availability, RAID

assumes that G may be 10 or 25 in its design analysis. With G = 25, RAID will be 24 times more likely to have data

unavailable than when mirrored disks are used and 12 times more likely than with chained declustering.

5.2. Load Balancing and Performance

Although the mirrored disk scheme provides the highest degree of data availability, it’s major drawback is

that it cannot balance the workload when a node fails. For example, assume that files A and B are stored on two

mirrored disk pairs attached to processors 1 and 2. When either processor 1 or 2 fails, access to both files will be

directed to the same mirrored pair and the workload on the remaining processor will double. In contrast, the
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chained declustering scheme can evenly distribute the workload among all remaining nodes when any node fails.

To recall an example given earlier, with M = 8, when one node fails, the workload of its "backup" node will

increase by only 7
1hh .

In the event of a node failure, Teradata’s clustering scheme provides limited load balancing depending on the

cluster size. In order to improve load balancing (i.e. a larger cluster size), the Teradata scheme must pay the price

of a higher probability of data being unavailable. On the other hand, in order to reduce the probability of unavail-

able data (i.e. a smaller cluster size), load balancing in the event of a node failure will be poorer.

In the RAID data placement scheme, the system will be restricted to one disk I/O per recovery group (G

disks) when one tries to access data on the failed disk before it is repaired/replaced. This is true because all remain-

ing G-1 disks in the same group must be read in order to regenerate the bad sector. In addition, to reconstruct a

failed disk, all sectors (both check and data sectors) on the other disks in the same group must be read and manipu-

lated ("exclusive-or"-ed, byte by byte). This reconstructing process will compete with the "normal" processes for

both CPU and I/O bandwidth. System performance, in terms of both throughput and response time, will degrad

significantly during the reconstruction period. With 1000 disks in a system, a disk will fail about every 30 hours.

Therefore, when 1000 disks are employed in a RAID system, some group will undergo reconstruction almost every

day.

5.3. Summary

In Table 3 we have summarized the probability of data not being availabile and the impact of a processor

failure on the workload of the remaining processors.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Schemes Chained Mirrored RAID’s data Teradata’s

declustering disks placement clusteringiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of any
data being unavailable 2M*p M*p (G-1)*M*p (N-1)*M*p

Load increase on M −1
1hhhhh 100% (1) N −1

1hhhhh

remaining nodesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
M = N = G = 32iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of any
data being unavailable 64*p 32*p 992*p 992*p

Load increase on 3.23% 100% (1) 3.23%
remaining nodesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
M = 32 and N = G = 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of any
data being unavailable 64*p 32*p 224*p 224*p

Load increase on 3.23% 100% (1) 14.3%
remaining nodesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
M = 32 and N = G = 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of any
data being unavailable 64*p 32*p 96*p 96*p

Load increase on 3.23% 100% (1) 33.3%
remaining nodesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 3: Summary of Availability and Load Balancing in Different Data Placement Schemes.

(1) Accesses to sectors on the failed disk will be quite slow as all remaining disks in the "failed" group must be

accessed in order to regenerate the requested data.

6. Conclusions and Future Research Directions

In this paper we have introduced a new declustering technique, termed chained declustering, for distributing

replicated data in a shared-nothing multiprocessor database machine. Chained declustering was shown to provide a

very high degree of availability, second only to Tandem’s mirrored disk approach. Although current disk technol-

ogy makes the simultaneous failure of two disks very unlikely, with very large database machine configurations

such failures will indeed occur occasionally.

The major contribution of chained declustering is not, however, is robustness with respect to two simultane-

ous node (processor or disk) failures. Rather, it is the ability of chained declustering to equally balance the work-

load among the remaining processors when a failure occurs. While Teradata’s replication technique can also uni-
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formly distribute the workload in the event of a failure, if any two nodes in a Teradata cluster fail none of the data

in the cluster will be available. With chained declustering, data will be unavailable only if two logically adjacent

drives fail - a very unlikely event. Furthermore, while Teradata’s load balancing mechanism is only able to handle

relations that are hash-partitioned, the mechanisms developed for chain declustering are able to handle all combina-

tions of partitioning mechanisms and access methods provided by Gamma.

Like the mirrored disk and Teradata strategies, chained declustering also relies on two identical copies of each

relation. The techniques used by RAID requires only about half as much disk space. However, since the cost of

disks accounts for a relatively small fraction of the total system expense, the performance advantage provided by

chained declustering in the event of failures should more than compensate for its increased consumption of disk

space; especially, in the arena of the highly available, high performance systems.

The analysis in this paper assumes that each processor is responsible for one disk16. One issue that was not

addressed is whether or not the results obtained will be significantly different if more than one disk is connected to a

processor. With respect to availability, the answer is no. Whether data will be available or not depends on how and

where it is placed and this is decided by the data placement scheme. Any other disk, whether connected to the same

processor as the original or not, will not affect its availability. For load balancing, on the other hand, having multi-

ple disks connected to one processor tends to reduce the relative increase in workload on the remaining processors

in the event of a disk/processor failure. The absolute increase in workload on the remaining processors, however, is

increased. If one considers the workload of a disk (disk queue length), the result will remain the same.

In the future we intend to conduct a detailed performance study of the chained declustering mechanism.

Among the issues we intend to investigate are the impact of a single node failure on different query types, the over-

head (query modification, maintenance of active fragment table and extent maps) associated with chained decluster-

ing, and the impact on performance of having to update both copies of each relation.
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