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Abstract

We present an approach to dealing with skew in parallel joins in database systems.

Our approach is easily implementable within current parallel DBMS, and performs well on

skewed data without degrading the performance of the system on non-skewed data. The

main idea is to use multiple algorithms, each specialized for a di�erent degree of skew, and to

use a small sample of the relations being joined to determine which algorithm is appropriate.

We developed, implemented, and experimented with four new skew-handling parallel join

algorithms; one, which we call virtual processor range partitioning, was the clear winner in

high skew cases, while traditional hybrid hash join was the clear winner in lower skew or no

skew cases. We present experimental results from an implementation of all four algorithms

on the Gamma parallel database machine. To our knowledge, these are the �rst reported

skew-handling numbers from an actual implementation.

1 Introduction

Multiprocessor database system technology has progressed to the point where a number of

companies are now shipping products that use parallelism to provide dramatic speedup and

scaleup performance. It is clear from the success of these systems that parallelism is an e�ec-

tive means of meeting the performance requirements of large database applications. However,

the basic technique that these systems use for exploiting intra-query parallelism (hash-based

redistribution of relations on their joining attribute) [DG92] is vulnerable to the presence of

skew in the underlying data. Simply put, if the underlying data is su�ciently skewed, load im-

balances in the resulting parallel join execution will swamp any of the gains due to parallelism

and unacceptable performance will result.

In response to this problem, a large and growing number of skew-handling algorithms have

been proposed. In general terms, these algorithms do a signi�cant amount of preprocessing

in order to compute an execution plan designed to minimize load imbalances. While these

algorithms may succeed in minimizing skew, invariably they perform much worse than the

basic parallel hash join algorithm on data that is not skewed. For example, most of the previ-

ously proposed skew handling algorithms require that the relations to be joined are completely
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scanned before the join begins [HL91, WDYT90, KO90]. Since the time to perform a parallel

hash join is a small multiple of the time required to scan the two relations being joined, this

can represent a substantial overhead, which is unacceptable for anything but extremely skewed

data.

Since there little or no empirical evidence that extreme degrees of skew occur commonly

in practice, it is sub-optimal to penalize the normal case in order to bene�t an extreme case.

For this reason, we sought to develop an approach to join processing in which the \normal"

case approaches the performance of the fastest known parallel join algorithms on non-skewed

data, but that avoids the disastrous performance degradation that standard hash-based join

processing su�ers on skewed data.

The basic idea in our approach is that we have multiple algorithms, each optimized for di�er-

ing degrees of skew. We found in our experiments that two algorithms are su�cient: the usual

parallel hybrid hash join algorithm [SD89], and a new algorithm that we call virtual processor

range partitioning, performs well on moderately skewed data at a cost slightly higher than that

of the parallel hybrid hash join. Before settling on these two algorithms, we implemented three

other new skew handling algorithms (range partitioning, weighted range partitioning, and a

scheduling version of virtual processor range partitioning) and performed tests on the imple-

mentation. We present detailed data on their performance from this implementation in this

paper. To the best of our knowledge, these skew-handling algorithms are the �rst ones ever

actually implemented in either a research prototype or a commercial parallel database system

product.

A fundamental step underlying our approach is an initial pass of sampling the relations to

be joined. The resulting set of samples is used in two ways: (1) they are used to predict the

level of skew in the data, and hence to select the appropriate join algorithm to employ, and (2)

they are used within the skew handling algorithms to determine the proper mapping of work to

processors. The initial sampling in our implementation is extremely fast | approximately one

percent of the time it would take hybrid hash to perform a join of the two relations assuming

non-skewed data.

A further desirable property of our approach is that it can be easily implemented within

the framework of existing parallel database systems. The modi�cations required to an existing

system are minimal; it took us less than a person-month to add this skew-handling scheme to

the Gamma prototype.

The remainder of this paper is organized as follows. Section 2 describes our algorithms

and the techniques that they use to avoid skew. Section 3 describes the implementation of

these algorithms within the Gamma parallel database machine. In Section 4 we present results

from a series of experiments with the implementation of these algorithms. Section 5 describes

related work on handling skew in parallel join operations including a comparison of these earlier

techniques with our own. We present our conclusions in Section 6.
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2 Algorithms

This section is composed of three parts: a description of the basic parallel hash join and how

it is vulnerable to skew; the basic techniques we employ to handle skew; and the resulting

new algorithms built using these basic techniques. While these techniques are described in

the context of parallel hash joins, they are applicable to a wide range of parallel database

algorithms. In fact, the fundamental problem with skew has nothing to do with joins. Skew

can occur whenever hashing is used to parallelize a task. For example, the techniques we

describe in this section can just as well be applied if a more traditional join algorithm such as

sort merge is used at each processor.

2.1 Review of Basic Parallel Hash Join

At the highest level, the working of parallel hash join algorithms in a shared-nothing multi-

processor database system is simple. For concreteness, suppose that we are joining R and S,

and that the join condition is R:A = S:B. Initially, both relations R and S are distributed

throughout the system; if there are k processors, and the sizes of R and S (in tuples) are jRj

and jSj, then approximately jRj=k tuples of R reside on disk at each processor. Similarly, each

processor has about jSj=k tuples of S on its disk.

To perform the join, each processor executes the following steps:

1. Every processor in parallel reads its partition of relation R from disk, applying a hash

function to the join attribute of each tuple in turn. This hash function has as its range

the numbers 0::k � 1; if a tuple hashes to value i, then it is sent to processor number i.

The set of R tuples sent to processor i in this step will be denoted Ri.

2. Each processor i in parallel builds a memory resident hash table using the tuples sent

to it during step 1. (This hash table uses a di�erent hash function than the one used to

repartition the tuples in step 1.)

3. Each processor in parallel reads its partition of S from disk, applying the same hash

function used in step 1 to each tuple in turn. As in step 1, this hash function is used to

map the S tuples to processors. The set of S tuples sent to processor i in this step will

be denoted Si.

4. As a processor receives an incoming S tuple s, the processor probes the hash table built

in step 2 to see if s joins with any tuple of R. If so, an answer tuple is generated.

As mentioned above, this is a simpli�ed description. For example, if not all of the R tuples

received in step 2 �t in memory, some over
ow handling scheme must be employed. Most

commonly, the over
ow processing is handled by partitioning Ri into smaller subparts, called

buckets, such that each bucket is small enough to �t entirely within memory. A critical factor

in determining the performance of the algorithm is the number of buckets needed for each of
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the Ri; the larger the number of buckets, the more I/O necessary as the tuples in the over
ow

buckets of Ri and Si are spooled to disk and then re-read to perform the join.

From the preceding description it should be clear that for good parallelization the number

of tuples mapped to each processor should be approximately equal, or else load imbalances will

result (this form of imbalance is what Walton [WDJ91] terms redistribution skew). These load

imbalances could be the result of a poorly designed hash function. However, load imbalance

due to a poor hash function can be removed by choosing a better hash function; the theoretical

literature on hashing gives a number of techniques designed to �nd a hash function that with

high probability performs well [CW79]. A more fundamental problem arises from repeated

values in the join attribute. By de�nition, any hash function must map tuples with equal join

attribute values to the same processor, so there is no way a clever hash function can avoid load

imbalances that result from these repeated values.

A more subtle cause of load imbalance occurs when the number of matching tuples varies

from processor to processor. This form of load imbalance results if the join selectivity for

Ri 1 Si di�ers from the join selectivity for Rj 1 Sj. This type of load imbalance is called join

product skew by Walton et al. [WDJ91].

2.2 Skew Avoidance Fundamentals

In the next �ve subsections we describe the techniques we apply to resolving both types of

skew.

Range Partitioning

A basic approach to avoiding redistribution skew is to replace hash partitioning with range

partitioning. The idea is that instead of allocating each processor a bin of a hash function,

each processor is allocated a subrange of the join attribute value. The values that delineate the

boundaries of these ranges need not be equally spaced in the join attribute domain; this allows

the values to be chosen so as to equalize the number of tuples mapped to each subrange. For

example, if the join attribute values appearing in the relation are f1,1,1,2,3,4,5,6g, and there

are two processors, one could choose \3" to be the splitting value, sending tuples with values 1

and 2 to processor zero and tuples with join attribute values 3 { 6 to processor one.

In general, if there are k processors, then there will be k � 1 \splitting values" delineating

the boundaries between contiguous ranges. We call these k�1 splitting values the \partitioning

vector." The partitioning vector is \exact" if it partitions the tuples in the relation into exactly

equal sized pieces. While computing an exact partitioning vector is di�cult, an attractive aspect

of range partitioning is that it is relatively easy to determine an approximate partitioning vector

via sampling; that is, without examining the entire relation. This technique of sampling for

approximate splitting vectors has been used previously in DBMS algorithms for evaluating non-

equijoins [DNS91a] and for parallel external sorting [DNS91b]. A theoretical investigation of
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R(K1,A) S(K2,B)

(1,3) (1,1)

(2,3) (2,2)

(3,3) (3,3)

(4,3) (4,4)

(4,5)

Table 1: Example relations R and S.

the performance of sampling-based range splitting appears in [SN92].

In a two relation join, say R 1 S, the question arises whether an algorithm should attempt

to balance the number of R tuples per node, or the number of S tuples per node, or the sum of

the R and S tuples per node. The answer is not always clear, but a useful general observation

is that an imbalance in the number of building tuples is much worse than an imbalance in the

number of probing tuples, since an imbalance in the number of building tuples per site gives

rise to extra buckets in the local subjoins, driving up the number of I/Os signi�cantly. This

observation is validated by results that we reported in [SD89] and by our experimental results

in Section 4.

Subset-Replicate

One complication arises with join processing via range partitioning in the presence of highly

skewed data: for equal sized partitions, it might be necessary to map a single data value to

multiple partitions. For example, if the join attribute values are f1, 1, 1, 1, 1, 1, 2, 3g, an

equal-sized partitioning would map f1, 1, 1, 1g to processor zero and f1, 1, 2, 3g to processor

one. If using a range partitioning that assigns single values to more than one partition, one

must take care to ensure that all possible answer tuples are produced. A simple solution would

be to send all tuples with the repeated join attribute value to all processors to which that

value is mapped, but this only results in multiple processors doing exactly the same work and

producing the same answer tuples at multiple sites.

It is su�cient to send all tuples with the repeated attribute value from one relation to all

sites to which that value is mapped, and to send each tuple with the repeated attribute value

in the other relation to exactly one of the sites with repeated values. We call this technique

subset-replicate. (Subset-replicate is similar to the fragment-replicate technique proposed for

distributed relational query processing by Epstein et al. [ESW78].) As an example, suppose

we are joining R and S with the join predicate R:A = S:B. Furthermore, suppose that the

relations R and S contain tuples as shown in Table 1.

Suppose we wish to join R and S on two processors. The splitting vector in this case is

a single value (since there are only two processors), the value \3." Then a subset-replicate

partitioning onto two processors p0 and p1 might send the R tuples (1; 3) and (2; 3) to processor
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p0 and the R tuples (3; 3) and (4; 3) to processor p1. This is the \subset" part of the partitioning.

Since the R tuples were subsetted, for correctness the S tuples with the join attribute value

3 must be replicated among both processors. This means that the S tuples (1; 1), (2; 2), and

(3; 3) will be sent to p0, while the S tuples (3; 3), (4; 4), and (4; 5) will be sent to p1.

Again the question arises whether to replicate the building (inner) relation and to subset the

probing (outer) relation or vice-versa. While there are clearly situations where either will out

perform the other, again a reasonable heuristic is to subset the building relation and replicate

the probing relation. The motivation for this heuristic is that it is critical that the portion of

the building relation mapped to each processor be as small as possible so as to minimize the

number of buckets in the join.

Weighting

Another complication that arises with range partitioning is that it will often be the case that

a join attribute value appears a di�erent number of times in di�erent partitions. For example,

suppose that the join attribute values in a 12 tuple relation are f1,2,3,4,4,4,4,4,4,4,4,6g, and

that we wish to partition over three processors p0, p1, and p2. Then an even partitioning vector

would be [4; 4], meaning that tuples with the join attribute value 4 should be mapped to all

three processors. Since a total of 8 tuples have the join attribute value \4", to balance the load

evenly among the 3 processors, 1/8 of the tuples with 4 as the join attribute must be directed

to processor p0 (along with join attribute values 1, 2, and 3), 1/2 to processor p1, and 3/8 to

processor p2 (along with join attribute value 6).

We refer to this technique for distributing replicated values for the subsetted relation as

weighted range partitioning.

Virtual Processor Partitioning

This and the next subsection deal with the problem of join product skew. For concreteness,

suppose that we are joining two 10,000 tuple relations and that in each relation the join attribute

value \1" appears 1,000 times and no other join attribute value appears more than once. Also,

assume that we have 10 processors. Then if we use equal sized range partitioning, all 1000

tuples with \1" as their join attribute value from both relations will be mapped to processor

zero, meaning that processor zero will be asked to generate 1,000,000 result tuples. There is

no way to remedy this problem by choosing a set of 9 splitting values; too many 1's will be

mapped to some processor in every case.

The solution to this problem is to choose many more partitions than there are processors.

This idea has appeared many times before in the skew join literature with respect to hash

bucket partitioning; the �rst reference to the technique is probably in [KTMo83]. We refer

to the technique of using multiple range partitions per node as virtual processor partitioning.

In the previous example, if we chose 100 buckets per processor, for a total of 1000 buckets,
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we would have a �ne enough granularity to resolve this problem. In particular, the 1000 1's

would be spread among 100 buckets (subranges), each of which could be mapped to a di�erent

processor. This of course leaves open the question of how these virtual processor partitions are

to be mapped to the actual processors. We considered two techniques for this, both described

in the next subsection.

Load Scheduling

We consider two basic techniques for mapping virtual processor partitions to actual processors:

1. Round robin.

This is the simplest scheme | if there are k processors, the ith virtual processor partition

is mapped to actual processor i mod k.

2. Processor scheduling.

In this scheme, for each virtual processor partition i, we compute an estimate of the cost

ci of joining the tuples of Ri and Si. Any formula for estimating the cost of a join could

be used; we chose the simple technique of estimating that

ci = jRijest + jSijest + jRi 1 Sijest

where jRijest is an estimate of the number of R tuples mapped to partition i, jSijest
is an estimate of the number of S tuples mapped to partition i, and jRi 1 Sijest is an

estimate of the number of tuples in Ri 1 Si. We computed this estimate of the size of

Ri 1 Si by assuming that the join attribute values in each of Ri and Si were uniformly

distributed between the endpoints of the range for virtual processor partition i. Once this

estimate for the cost of the joining of the virtual processor partitions has been computed,

any task scheduling algorithm can be used to try to equalize the times required by the

virtual processor partitions allocated to the physical processors. We used the heuristic

scheduling algorithm known as \LPT" [Gra69].

This approach is similar to that used by Wolf et al. [WDYT90] in scheduling hash par-

titions, although in that paper the statistics used to schedule these partitions are gained

by a complete scan of both relations rather than by sampling, and hash partitioning is

used instead of range partitioning.

2.3 Algorithm Description

The algorithms that we implemented can be described in terms of the skew handling techniques

de�ned above. But �rst we need to discuss how the approximate splitting vectors are computed.

For each algorithm except hybrid hash, we �rst used sampling to compute a statistical pro�le

of the join attribute values of the two relations to be joined. We obtained this sample by using
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strati�ed sampling [Coc77] with each stratum consisting of the set of tuples initially residing at

a processor. Within each processor, the sampling was performed using page-level extent map

sampling. Extent map sampling is described in Section 3. Issues involving strati�ed sampling

and page level sampling are discussed in [SN92]. We now describe the skew handling algorithms.

1. Hybrid hash.

This is just the basic parallel hybrid hash algorithm (with no modi�cations for skew

handling.) A description of this algorithm and some alternatives appears in [SD89].

2. Simple range partitioning.

At the top level, this algorithm works as follows:

(a) Sample the building (inner) relation.

(b) Use the samples to compute an approximate partitioning vector. The number of

partitions de�ned by the partitioning vector is equal to the number of processors.

(c) Redistribute the building relation using the approximate partitioning vector to de-

termine to which processor the tuples should go.

(d) Build an in-memory hash table containing as many building relation tuples as possi-

ble. Over
ow tuples are partitioned into buckets sized so that each such bucket will

�t in main memory [SD89].

(e) Redistribute the probing (outer) relation using the same approximate partitioning

vector as in step 3.

(f) For each tuple of the probing relation probe the in-memory hash table, outputting

a join result tuple for each match. If over
ow occurred in step 4, probing tuples

corresponding to one of the over
ow buckets of the building relation are written

directly to disk. Once, all the probing tuples have been received, the over
ow buckets

of the building and probing relations are processed.

3. Weighted range partitioning.

This algorithm is the same as range partitioning except that instead of simple range

partitioning, tuples are redistributed using weighted range partitioning.

4. Virtual processor partitioning - round robin.

This algorithm is the same as range partitioning except that instead of having the number

of partitions equal the number of processors, the number of partitions is a multiple of the

number of processors. The exact number of partitions is a parameter of the algorithm.

The partitions are allocated to processors using round robin allocation.

5. Virtual processor partitioning - processor scheduling.
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This algorithm is the same as virtual processor partitioning - round robin except that

instead of using round robin allocation of partitions to processors, processor scheduling

using LPT is used.

3 Implementation Details

In this section we describe some of the details of the implementation of the skew handling

algorithms within Gamma. We begin by explaining how we sampled the relations, and then

consider the modi�cations to Gamma that were necessary for the remainder of the algorithms.

Sampling Implementation

As mentioned in Section 2, we use strati�ed sampling to obtain a sample from relations dis-

tributed throughout the multiprocessor. In strati�ed sampling, if a k node multiprocessor needs

to take n samples, each processor takes n=k samples from its local partition of the database. Al-

though this is not a simple random sample of the entire relation, a strati�ed sample is su�cient

for our purposes.

Strati�ed sampling requires that each processor take some speci�ed number of samples from

its partition of the database. A number of techniques have been proposed for this problem,

notably sampling from B+ trees [OR89], sampling from hash tables [ORX90], and using a dense

index on a primary key [DNS91a]. In this section we describe a new technique that we call

extent map sampling.

Extent-based sampling requires neither an index on a dense primary key nor an index on any

other attribute. Our scheme hinges on the fact that many systems allocate pages in contiguous

units called extents, and record information about where the pages of a �le are stored by

linking together the extents for the pages of the �le. This information is maintained in a small

memory-resident data structure. Moreover, the address of a page within an extent can be found

by adding an o�set to the address of the �rst page of this extent. Given this information, we

can select a random page or tuple as follows: generate a random number r between one and the

number of pages in the �le (relation). Find the address of the rth page of the �le by chaining

down the linked list of extents. If a random page is desired, then this page can be brought in;

if a random tuple is desired, we follow this I/O by randomly choosing one of the tuples in the

page.

The above correctly chooses a random page if the pages in the relation have the same

number of tuples. However, if they do not we will need acceptance/rejection sampling to

accept or reject a randomly chosen page so that the inclusion probabilities for each tuple of

the relation is identical. If all pages have the same number of tuples then we require exactly

one I/O to fetch a random tuple. If they do not, then the average number of I/O's required

for fetching a random tuple is the inverse of the �ll-factor. Therefore, if the �ll-factor is more

than 50% we would need at most two I/O's on an average to fetch a random tuple. This is
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still better than the previous index-based methods even assuming that the previous methods

have no wasted I/O's due to acceptance rejectance sampling. For this reason we have adopted

extent-map sampling in our implementation.

We also used page-level sampling in our implementation. This means that after a random

page has been selected and read into memory (using extent map sampling), we add every tuple

on that page to the sample. This in e�ect boosts the number of samples per I/O by a factor

equal to the average number of tuples per page. This technique is most e�cient if the correlation

on the join attribute within a page is low.

Implementation in Gamma

In order to investigate the performance of our skew handling algorithms, we implemented the

algorithms using Gamma [DGS+90] as our experimental vehicle. Gamma falls into the class

of shared-nothing [Sto86] architectures. The hardware consists of a 32 processor Intel iPSC/2

hypercube. Each processor is con�gured with a 80386 CPU, 8 megabytes of memory, and a

330 megabyte MAXTOR 4380 (5 1/4 in.) disk drive. Each disk drive has an embedded SCSI

controller which provides a 45 Kbyte RAM bu�er that acts as a disk cache on sequential read

operations. The nodes in the hypercube are interconnected to form a hypercube using custom

VLSI routing modules. Each module supports eight full-duplex, serial, reliable communication

channels operating at 2.8 megabytes/sec.

Gamma is built on top of an operating system designed speci�cally for supporting database

management systems. NOSE provides multiple, lightweight processes with shared memory. A

non-preemptive scheduling policy is used to help prevent convoys [BGMP79] from occurring.

NOSE provides communications between NOSE processes using the reliable message passing

hardware of the Intel iPSC/2 hypercube. File services in NOSE are based on the Wisconsin

Storage System (WiSS) [CDKK85].

The services provided by WiSS include sequential �les, byte-stream �les as in UNIX, B+

tree indices, long data items, an external sort utility, and a scan mechanism. A sequential �le

is a sequence of records that may vary in length (up to one page) and that may be inserted

and deleted at arbitrary locations within a �le. Optionally, each �le may have one or more

associated indices that map key values to the record identi�ers of the records in the �le that

contain a matching value. One indexed attribute may be designated to be a clustering attribute

for the �le.

Before beginning this work, Gamma already contained the code needed to perform a parallel

hybrid hash join. The critical code that needed to be added to the system in order to incorporate

our new skew handling join algorithms were

1. code to do the parallel strati�ed page level extent map sampling,

2. code to sort the resulting samples and build the required approximate splitting vectors,

and
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3. code to redistributes tuples using the new distribution types (e.g., subset-replicate) re-

quired by our algorithms.

Items 1 and 2 above were straightforward. We now discuss the changes to the redistribution

code in more detail.

Basic parallel hybrid hashing in Gamma makes use of a data structure called a split ta-

ble [DGS+90, DG92]. This data structure contains entries that are (hash bucket, processor

number) pairs. If k processors are being used to execute a relational operation, then the split

tables have k entries. The semantics are such that any tuple that hashes to a given hash bucket

should be sent to the processor number in the split table entry for that hash bucket. Each

processor executing an operation has a copy of this split table. In a given processor, associated

with the split table are k outgoing bu�er pages, one for each processor. When a tuple maps

to a given hash bucket, it is added to the corresponding bu�er page; when this page �lls, a

message containing this page is sent to the target processor.

To add basic range partitioning, we added a new type of split table called a range split table.

This was a simple modi�cation; the only change is that entries of the split table correspond

to ranges of join attribute values instead of corresponding to hash buckets. When deciding

where to send a tuple, instead of hashing the join attribute value to �nd the corresponding

entry, the range split table is searched to �nd the range containing the join attribute value. If a

tuple t maps to more than one range (e.g., if there are repeated values in the split table), then,

during redistribution of the building (inner) relation, one of the duplicate ranges is selected

at random and t is sent to the corresponding processor. During redistribution of the probing

(outer) relation, t is sent to the processors corresponding to all of the containing subranges.

To add weighted range partitioning, we augmented the basic range split table to contain

weights for the upper and lower boundary values of each range in the table. These weights are

computed from the sorted set of samples at the time when the partitioning values are being

computed. Then, during the redistribution of the building relation, instead of sending tuple

t to a randomly selected subrange, a subrange is selected with a probability that re
ects the

weights in the weighted-range split table.

The most obvious way to add virtual processor range partitioning would be to expand these

basic range splitting tables to add more entries than processors. The di�culty in doing so is

that the lower level Gamma code assumes that there will be exactly one outgoing bu�er page

for every entry in the split table. For large numbers of virtual processors, the space required by

this scheme is prohibitive. For example, for 30 processors and 50 virtual processor ranges per

processor it would require 1500 output bu�ers (12 megabytes with 8K byte network packets)

per node. This is more than the total amount of memory per node in our sytem.

To solve this problem we used a two-level split table. The upper level table contains the

same number of entries as the number of virtual processor partitions. The lower level table

contains one entry per processor. Each entry in the upper table consists of a (range, lower

split table entry number) pair. When a tuple is being processed to decide to which processor

11



it should be sent, �rst a lookup is performed on the upper table to determine the set of virtual

processor ranges in which the join attribute value of the tuple appears. Next the entries for

these ranges are examined to determine to which lower level entries the tuple belongs. From

this set of entries in the lower level table the system can determine to which processors the

tuple should be sent. Only one bu�er page per destination processor is used.

4 Experiments and Results

Test Data

For the purposes of this experiment we wanted to use a set of test data that was simple and

intuitively easy to understand, yet that would stress all of our skew handling algorithms. One

option would have been to generate relations with attributes drawn from standard statistical

distributions (like Zipf and normal.) We decided against this because we found that relations

with such attributes make the experiments much harder to understand and control. For exam-

ple, suppose we wish to perform a set of joins on a pair of relations, varying the level of skew

in both relations, yet keeping the answer size approximately constant? This is di�cult to do

with sets of Zip�an distributions.

To remedy this problem we generated relations with a number of integer attributes, each

with various amounts of \scalar skew" | that is, in an N tuple relation, in each attribute the

constant \1" appears in some �xed number of tuples, while the remaining tuples contain values

uniformly distributed between two and N . The use of such a distribution has three major

bene�ts. First, it makes it easy to understand exactly what experiment is being performed.

Second, it is easy to keep the answer size constant over varying amounts of skew. Finally,

it captures the essence of the Zip�an distribution (a small number of highly skewed values

with the bulk of the values appearing very infrequently) without su�ering its drawbacks. The

term \scalar skew" is due to Walton et al. [WDJ91]. This is also the model of skew used by

Omiecinski [Omi91].

The exact description of the attributes are as follows. In each case, we are assuming a

relation of N tuples, and that N � 100; 000. The attributes relevant to our experiments are x1,

x10, x100, x1000, x10000, x20000, x30000, x40000, and x50000. The number following the \x"

in each case is the number of tuples in which the value \1" appears in the join attribute (these

tuples are chosen at random). The remainder of the tuples have a join attribute value chosen

randomly from 2 to N , where N is the number of tuples in the relation. For example, the x10

attribute has the semantics that the value \1" appears in exactly ten randomly chosen tuples.

The remaining N � 10 tuples contain values uniformly chosen at random between 2 and N .

The rationale for choosing these attributes should become more apparent in the following set of

experiments. In addition to the attributes listed above, each tuple contained a string attribute

to pad the length of each tuple to 100 bytes. In all of our experiments below we used relations

of 500,000 tuples. Thus, each relation occupies approximately 50 megabytes of disk space.
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All experiments were conducted using 30 processors with disks. Speedup or scaleup exper-

iments were not performed as we were more interested in focusing on the relative performance

of the di�erent algorithms. Furthermore, previous join [DGG+86, DGS+90, DGS88, DNS91a,

SD89] and sorting [DNS91b] tests demonstrated that the Gamma provides linear speedup and

scaleup over a wide range of di�erent hardware and software con�gurations.

Single Skew Experiments

In the �rst set of experiments we ran the building relation was skewed and the probing relation

was uniform. This models a very common sort of join in practice | joins between a key of

one relation and the corresponding foreign key in another. Each data point is the average of 5

experiments. For the range, weighted range, and virtual processor range partition round robin

the number of samples on the building relation was �xed at 14,400 (the probing relation is not

sampled in these algorithms.) For the virtual range partition processor scheduling algorithm,

we took 14,400 samples of both the building and probing relations. For the virtual processor

range partitioning algorithms we use 60 virtual processors per processor. The results of the

experiment appear in Table 2.

Alg. x1 1 x1 x10K 1 x1 x20K 1 x1 x30K 1 x1 x40K 1 x1 x50K 1 x1

HH 33.0 52.2 79.5 DNF DNF DNF

Range 43.1 43.4 58.9 DNF DNF DNF

W. Range 41.8 41.9 51.7 52.2 52.9 52.6

VP-RR 43.9 44.2 44.0 43.4 43.8 43.3

VP-PS 47.7 47.3 47.5 47.6 47.9 47.6

Table 2: E�ect of skewed building relation.

In Table 2, entries marked \DNF" means that the algorithm did not �nish. The reason

these tests did not �nish was that in those cases marked \DNF", the algorithms mapped more

tuples with \1"s in the join attribute to a single processor than can simultaneously �t in the

memory of that processor. In the current Gamma implementation, the per-node hybrid hash

code does not handle this extreme case. We see that Hybrid Hash (HH) is clearly the algorithm

of choice for the zero skew case (x1 1 x1). This is because when compared to the skew handling

algorithms, (1) Hybrid Hash does not incur the overhead of collecting the samples, sorting the

samples, and computing an approximate splitting vector, and (2) in Hybrid Hash, to determine

a destination processor during redistribution one need only compute a hash function, while in

all the other algorithms it is necessary to search a sorted list for the appropriate range entry.

The di�erence in performance for Range Partitioning (Range) and Weighted Range Par-

titioning (W. Range) at zero skew is an artifact of the implementation | Weighted Range

Partitioning was implemented second and uses a more e�cient table search during repartition-
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ing. We expect that if Range Partitioning were reimplemented using this new code, it would

be slightly faster at zero skew since it doesn't need to check the weights before choosing a

destination in the subset phase.

At x10K, both Range Partitioning and Weighted Range Partitioning e�ect the same parti-

tioning, sending the tuples with 1's in the join attribute along with about 6K other tuples to

processor zero. However, at x20K, Range Partitioning sends all 20K tuples with 1's to processor

zero, while Weighted Range Partitioning sends about 16K of these tuples to processor zero and

4K of these tuples (plus about 12K other tuples) to processor one. Weighted Range Partition-

ing performs worse on x10K than on x1 because even though the same number of tuples are

distributed to each processor in both cases, in the x10K case the join hash table for processor

zero contains one bucket with 10K tuples (the bucket to which \1" is mapped.) At 20K the

situation is even worse, as there is a bucket with about 16K ones in that case.

Virtual Processor Range Partitioning with Round Robin allocation (VP-RR) starts o� at

zero skew with slightly higher overhead than Weighted Range because during redistribution,

to determine a destination processor it must search a much bigger range table (bigger by a

factor of 60.) Virtual Processor Range Partitioning with Processor Scheduling (VP-PS) has

even more overhead, since it must sample and sort the probing relation and then run the LPT

scheduling algorithm. However, in the skewed cases both these algorithms outperform Range

and W. Range because they map the tuples with 1's to more processors, avoiding the large hash

table entry e�ect.

Next we wanted to test the e�ect that a skewed probing relation would have on the al-

gorithms. Note that since the �rst four algorithms do not sample the probing relation, these

algorithms use the same splitting vector independent of the skew in the probing relation. For

this reason, the performance deteriorates rapidly, so we do not go beyond x1 1 x20K. Note that

Hybrid Hash does relatively well here. VP-PS samples the probing relation, but its estimates

of the per virtual processor execution times were too inaccurate to provide good performance.

Algorithm x1 1 x1 x1 1 x10K x1 1 x20K

HH 33.0 44.5 55.3

Range 43.1 53.3 63.7

W. Range 41.8 51.0 61.7

VP-RR 43.9 52.2 63.0

VP-PS 47.7 58.1 67.9

Table 3: E�ect of skewed probing relation.

An alternative approach to handling single relation skew would be to sample the probing

relation, then use these samples to compute a splitting vector that could be used for both the

building and probing relations. We did not pursue this approach for the following reason: if

the probing relation is highly skewed, and we distribute the building relation using a splitting
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vector that evenly distributes the probing relation, then greatly varying numbers of building

tuples are sent to each processor. This in turn causes some processor(s) to use many more

buckets that would be necessary if the building relation were evenly distributed, which will

cause performance to su�er.

Join Product Skew

In this subsection we present experiments in which both relations that participate in the join are

skewed. In general, this sort of skew is much harder to deal with than skew in a single relation.

Intuitively, the problem is that in join product skew, a relatively small number of repeats can

cause a tremendous blowup in the number of tuples generated in the join. For example, if we

join the two relations using the join clause x10000 1 x10000, the result will have 108 tuples

generated due to matches of tuples with ones in the join attributes. This result would be 20G

bytes. In addition to exceeding the capacity of our disk drives, we don't think such queries

make any sense. Accordingly, we decided to experiment with more modest skews. The �rst set

of experiments below shows the performance of the algorithms using the same con�guration

(number of samples, number of virtual processors per node) as in Table 2.

Algorithm x10K 1 x10 x1K 1 x100 x100 1 x1000

HH 143.6 144.0 144.0

W. Range 148.2 148.2 149.4

VP-RR 49.7 85.8 151.0

VP-PS 56.3 94.1 155.0

Table 4: Performance on data with join product skew.

The joins in Table 4 were designed so that the result size is roughly comparable to that in

Tables 2 and 3. In each case the result contains about 600K tuples, 100K of which are due to

joining tuples that contain ones in the join attribute. It is clear that only the virtual processor

algorithms have signi�cant success in dealing with this sort of skew. Intuitively, the reason

is that in each of the Range and Weighted Range algorithms, the skew in the relation is not

enough to cause tuples with one's in the join attribute to be sent to more than one processor.

With the exception of the x100 1 x1000 join, both of the virtual processor algorithms have

enough virtual buckets that the one's are mapped to enough processors to distribute the work.

For the x100 1 x1000 join, the round robin algorithm fails to distribute the one's because

there are so few in the building relation. The virtual processor range partitioning processor

scheduling algorithm also fails to distribute the one's into multiple buckets, again because its

estimates of the work required per virtual processor are too inaccurate.

It is clear that the performance of the virtual processor range partition algorithms is crit-

ically dependent upon the number of virtual processors per processor. Table 5 explores the
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performance of the round robin variant on the join x10000 1 x100 for various numbers of pro-

cessor per node. (Since in our experiments the processor scheduling variant was uniformly worse

than the round robin variant, we omit the data points for that algorithm.) The table shows

the clear trend that the more virtual processors, the better the performance. The reason for

this is that the tuples with \1"s are being distributed over more and more (actual) processors,

achieving better load balancing.

virt. procs. 1 5 10 20 30 60

exec. sec. 147.2 95.3 64.0 54.0 51.8 49.7

Table 5: Dependence on number of virtual processors, x10000 1 x100, virtual processor range

partitioning.

Finally, we wanted to illustrate the dependence of virtual processor range partitioning on

the number of samples. Table 6 lists the average time as a function of the number of samples

for the virtual processor range partition round robin algorithm as a function of the number

of samples for the join x10000 1 x100. Again, since virtual processor range partitioning with

round robin allocation was uniformly the best skew handling algorithm, we only present data

for it. Note that the performance is relatively stable independent of the number of samples.

The general trend is that taking too few samples results in poor load balancing, while taking

too many samples results in too much overhead due to sampling (notice in Table 6 that the

overall running times dip from 1800 to 3600 samples and then begin to rise again.)

number of samples 1800 3600 7200 14400

execution time (sec) 49.0 47.8 49.0 49.7

Table 6: Dependence on number of samples, x10000 1 x10, virtual processor range partitioning.

Finally, we would like emphasize that the virtual processor range partition round robin is

exceedingly successful at balancing the load among the processors during the execution. Table 7

gives maximum and minimum times (over all processors) to complete the building phase (that

is, redistributing the building relation and building an in-memory hash table) and the entire

join of x1000 1 x10. As before, we used 14400 samples and 60 virtual processors per processor.

Note that the total time (49.77 seconds) di�ers from the time reported in for this join in Table 4.

This is because the times presented in that table are averages over �ve runs, whereas the times

in Table 7 are from a single run. The di�erence between the maximum and minimum times for

the building phase is less than 6%; the di�erence for the total execution time is about 2%.
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Phase min seconds max seconds

Building 15.55 16.48

Complete Join 48.72 49.77

Table 7: Maximum and minimum times over all processors, x10000 1 x10, virtual processor

range partitioning.

5 Related Work

There has been a wealth of research in the area of parallel join algorithms. Originally, join

attribute values were assumed to be uniformly distributed and hence skew was not a problem

(see, for example, [BFKS87, Bra87, DG85, DGS88, KTMo83].) As parallel join algorithms

have matured, this uniformity assumption has been challenged (see, eg., [LY90, SD89]). In this

section, we examine a number of previously proposed algorithms for dealing with data skew

and compare these algorithms with our own.

5.1 Walton, Dale, and Jenevein

Walton et al. [WDJ91] present a taxonomy of skew in parallel databases. First, they distinguish

between attribute value skew (AVS) which is skew inherent in the dataset, and partition skew

which occurs in parallel machines when the load is not balanced between the nodes. AVS

typically leads to partition skew but other factors are also involved. These include:

1. Tuple Placement Skew (TPS): The initial distribution of tuples may vary between the

nodes.

2. Selectivity Skew (SS): The selectivity of selection predicates may vary between nodes, for

example, in the case of a range selection on a range-partitioned attribute.

3. Redistribution Skew (RS): Nodes may receive di�erent numbers of tuples when they are

redistributed in preparation for the actual join.

4. Join Product Skew (JPS): The join selectivity on individual nodes may di�er, leading to

an imbalance in the number of output tuples produced.

Walton et al. use an analytical model in order to compare the scheduling hash-join algorithm

of [WDYT90] and the hybrid hash-join algorithm of Gamma [SD89, DGS+90]. The main

result is that scheduling hash e�ectively handles RS while hybrid hash degrades and eventually

becomes worse than scheduling hash as RS increases. However, unless the join is signi�cantly

skewed, the absolute performance of hybrid hash is signi�cantly better than that of scheduling

hash.
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5.2 Schneider and DeWitt

In [SD89], we explored the e�ect of skewed data distributions on four parallel join algorithms

in an 8 processor version of the Gamma database machine. The experiments were designed

such that TPS and SS were absent. For the tested AVS (normally distributed values), the hash

function used in the redistribution phase was quite e�ective in balancing the load and hence

RS was low. Likewise, JPS was low.

The overall results were that the parallel hash-based join algorithms (Hybrid, Grace, and

Simple) are more sensitive to RS resulting from AVS in the "building" relation (due to hash

table over
ow) but are relatively insensitive to RS for the "probing" relation. Experiments with

"double-skew" (which lead to JPS) were not run but we extrapolated that the problems would

be worse because this case is a superset of the RS for the building relation.

5.3 Kitsuregawa and Ogawa

Kitsuregawa and Ogawa [KO90] describe two algorithms, bucket-converging parallel hash-join

and bucket-spreading parallel hash join. The bucket-converging hash join is a basic paralleliza-

tion of the GRACE join algorithm [KTMo83]. Relation R is read from disk in parallel and

partitioned into p buckets (where p is much larger than k, the number of nodes). Since each

bucket is statically assigned to a particular node, all of R is redistributed during this phase of

the algorithm. Next, the size of each bucket is examined, and, if necessary, enough buckets are

redistributed so that the sum of the sizes of the buckets at each processor is balanced. Relation

S is processed similarly. In the last phase, all of the respective buckets of R and S on each

node are joined locally.

As they point out, the �rst phase of this algorithm (the initial repartitioning) is very sus-

ceptible to RS. As an alternative, they propose a bucket-spreading hash join algorithm. In

this algorithm, relations R and S are partitioned into p buckets as before but each bucket is

horizontally partitioned across all available processors during the initial repartitioning phase.

During the second phase of the algorithm, a very sophisticated network, the Omega network,

is used to redistribute buckets onto the nodes for the local join operation. The Omega network

contains logic to balance the load during the bucket redistribution.

Simulation results are presented for the two algorithms where AVS is modeled using a Zip�an

distribution. When the data is uniformly distributed, the two algorithms are almost identical.

The bucket-spreading algorithm is shown to e�ectively reduce RS in the presence of increasing

AVS, while the bucket-converging algorithm su�ers.

When compared to our weighted-range and virtual processor algorithms, both of these

algorithms are likely to have higher response times. In particular, our algorithms redistribute

both the joining relations exactly once. Their bucket-spreading algorithm redistributes both

relations twice. In addition, if the two relations do not �t in memory, an extra write and read

of both relations to disk will be required between the two repartitioning phases. The bucket-
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converging algorithm, on the other hand, incurs extra redistribution and I/O costs only for

those buckets that must be redistributed in order to balance the load among the processors.

However, as they point out, this algorithm is very susceptible to RS.

5.4 Hua and Lee

Hua and Lee [HL91] proposed three algorithms for processing parallel joins in the presence of

AVS. The �rst algorithm, tuple interleaving parallel hash join, is based on the bucket-spreading

hash join algorithm of Kitsuregawa and Ogawa [KO90]. The major di�erence is that instead of

relying on a specially designed intelligent network for mapping buckets to nodes, this decision

is handled in software by a coordinator node.

The second algorithm, Adaptive Load Balancing parallel hash join, tries to avoid much of

the massive data redistribution incurred by the tuple interleaving algorithm. In the case of mild

skew, a more selective redistribution is likely to perform better. In this algorithm, relations R

and S are partitioned into p buckets where each bucket is statically assigned to a single node.

Instead of immediately performing local joins, though, a partition tuning phase is executed in

which a best-�t decreasing heuristic is used to determine which buckets to retain locally versus

which ones to redistribute. This algorithm is basically identical to Kitsuregawa and Ogawa's

bucket-converging algorithm,

The �nal algorithm, Extended Adaptive Load Balancing parallel hash join, is designed for

the case of severe skew. Relations R and S are partitioned into p buckets where each bucket

is stored locally. Next, all nodes report the size of each local bucket to the coordinator who

decides on the allocation of buckets to nodes. The allocation decision is broadcast to all the

nodes and all the buckets are redistributed across the network. Local joins of respective buckets

are then performed on each node. The basic form of this algorithm is identical to that of Wolf

et al. [WDYT90]. The algorithms di�er in the computation of the allocation strategy.

The three algorithms are compared using an analytical model. The basic results are that

the tuple interleaved and extended adaptive load balancing algorithm are una�ected by skew

in the size of partitions while the performance of the adaptive load balancing algorithm and

the bucket-converging algorithm eventually cross over and become much worse as the skew

increases.

Since the �rst two algorithms are basically identical to those of Kitsuregawa, they have the

same relative performance to our algorithms. Like our algorithms, the extended adaptive load

balancing parallel hash join algorithm repartitions each relation exactly once. However, unless

both relations �t in memory, an extra read and write of both relations occurs during the initial

bucket forming phase. The cost of this step is certainly higher than the cost we incur sampling

one or both relations (about 1/2 second each in our implementation).
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5.5 Wolf, Dias and Yu

Wolf et al. [WDYT90], propose an algorithm for parallelizing hash joins in the presence of

severe data skew. The scheduling hash algorithm is as follows. Relations R and S are read,

local selections or projections are applied, and the results are written back locally as a set of

coarse hash buckets. Additionally, statistics based on a �ner hash function are maintained for

each bucket. Next, a scheduling phase occurs in which a coordinator collects all the �ne and

coarse bucket statistics and computes an allocation of buckets to nodes. The allocation strategy

is broadcast to all nodes and relations R and S are redistributed across the network accordingly.

Hash-joins are then performed locally for each bucket.

Several heuristics are proposed for computing the allocation strategy in the scheduling phase

including longest processing time �rst, �rst �t decreasing, and skew.

An analytical model is used to brie
y compare the strategies. AVS is modeled with a zip�an

distribution. No TPS or SS skew occurs. A double-skew (skew in both join relations) style join is

speci�cally modeled. The load-balancing heuristics are shown to be highly e�ective in balancing

the load especially as the number of processors becomes large. However, no comparison is made

with the performance of other join algorithms (skew handling or non-skew handling.)

Like Hua's extended adaptive load balancing parallel hash join algorithm, this algorithm

incurs an extra read and write of both relations during the initial bucket forming phase. The

cost of this step will certainly be higher than the cost of sampling both relations. However, it

may be the case that the increased accuracy in skew information that is obtained by looking at

every tuple will su�ciently improve the variance in the response time among the processors that

the cost of the extra read and write pass is worthwhile. Without implementing both algorithms

on the same hardware and software base it is probably impossible to determine precisely which

algorithm provides the best overall performance.

5.6 Omiecinski

Omiecinski [Omi91] proposed a load balancing hash-join algorithm for a shared memory mul-

tiprocessor. The algorithm is based on the bucket-spreading algorithm of Kitsuregawa and

Ogawa [KO90]. It di�ers in that it doesn't rely on special-purpose hardware, it assigns buck-

ets to processor(s) using a �rst-�t decreasing heuristic, and it has other optimizations for the

shared-memory environment.

Analytical and limited experimental results from a 10 processor Sequent machine show that

the algorithm is e�ective in limiting the e�ects of AVS even for double-skew joins. (AVS is

modeled by having a single value account for X% of the relation while the other 1-X% of the

values are uniformly distributed.)
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6 Conclusion

The algorithms for skew handling proposed in this paper represent a simple way to augment

existing parallel database systems to make their performance more robust in the presence of

skewed joins. The modi�cations needed to install these changes in an existing system are

simple | all that is needed is to add extent-map sampling (or some equivalent), support for

subset-replicate virtual processor split tables, and �nally a small amount of code to analyze the

samples and build the necessary split tables.

The experiments we performed suggest the following approach to running multiprocessor

joins:

1. Take a pilot sample of both relations involved in the join.

2. Inspect the resulting set of samples to determine which relation is more highly skewed

(by counting the number of repeated samples in each.)

3. If neither of the relations appears skewed, revert to simple hybrid hash.

4. If at least one of the relations appears to be skewed, use the virtual processor range

partition round robin join algorithm. The most skewed relation should be the building

relation.

This scheme incorporates a number of heuristics, and, like all optimizer heuristics, it can be

tricked into choosing a sub-optimal plan in some situations. Yet it is simple, implementable,

and in general runs non-skewed joins in time comparable to that of standard hybrid hash (the

overhead outlined above takes just a few seconds in our implementation) and runs skewed joins

without su�ering the terrible worst-case performance that would result from running hybrid

hash on highly skewed data.

A number of interesting open questions remain to be addressed in future work. First, as

our experiments illustrate, the virtual processor range partitioning algorithm depends critically

on the number of virtual processors chosen. The optimal number for this parameter depends

upon the system con�guration (most importantly the number of processors) and how little skew

you are willing to tolerate. The values we used in our experiments (60 virtual processors per

processor) are reasonable and performed well over the test data, but we do not claim that they

are globally optimal.

Second, in this work we did not address the question of how to handle joins in which the

operands are of greatly di�erent size. Our experience from these experiments suggest that a

critical point is to keep the number of buckets of the building relation to a minimum. There

are two ways that a large number of buckets could result: a large building relation, or a skewed

building relation. A reasonable heuristic is that if the relations are of roughly comparable size,

the more skewed relation should be the building relation; if they are of very di�erent size, then

the smaller relation should be the building relation and skew should be handled by building
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a split table based upon samples of the probing relation. We intend to experiment with this

heuristic in future work.

Finally, as the number of processors in the system grows to the thousands, the overhead

of sorting and analyzing the samples will grow (the cost of obtaining the samples does not, as

we can use a constant number of samples per processor as the system scales.) It is not clear

that this overhead will grow as fast as the cost of performing the join itself (if one is using

1000 processors for a join, presumably it is a big join!), but still there is room for reducing this

overhead by doing some of the processing in parallel instead of doing everything at a central

coordinating processor. For example, as a �rst step every processor could sort its local set of

samples before sending them to the coordinator, which could then do a simple merge instead

of a sort.
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