
OPT++ : An Object{Oriented Implementation for Extensible Database

Query Optimization�

Navin Kabra David J. DeWitt

Computer Sciences Department

University of Wisconsin, Madison

fnavin, dewittg@cs.wisc.edu

Paper Number 323

Abstract

In this paper we describe the design and implementation of OPT++, a tool for Extensible Database

Query Optimization that uses an object-oriented design to simplify the task of implementing, extending,

and modifying an optimizer. Building an optimizer using OPT++ makes it easy to extend the query

algebra (to add new query algebra operators and physical implementation algorithms to the system),

easy to change the search space explored, and also easy to change the search strategy used. Furthermore,

OPT++ comes equipped with a number of search strategies that are available for use by an Optimizer{

Implementor. OPT++ considerably simpli�es both, the task of implementing an optimizer for a new

database system, and the task of experimenting with various optimization techniques and strategies to

decide what techniques are best suited for that database system. We present the results of performance

studies which validate our design and show that, in spite of its
exibility, OPT++ can be used to build

e�cient optimizers.

1 Introduction

Although constructing a high-performance database engine has become almost straightforward, building

query optimizers remains a \black art". Writing an optimizer, debugging it, and evaluating di�erent

optimization strategies remains a di�cult and time-consuming task. Consequently, the state of com-

mercial optimizers is frequently not very good, in spite of the fact that query optimization has been a

subject of research for more than 15 years. Furthermore, existing commercial optimizers are often so

brittle from years of patching that further improvement ranges from di�cult to impossible. While quite

a bit has been published about extensible query optimizers in the research literature, the actual success

of this work is limited. Thus, good tools are still needed to streamline the process of implementing and

evolving query optimizers.

Extensible query optimization frameworks that have been proposed in the research literature have a

number of drawbacks. Optimizers that allow easy addition of new query algebra operators/algorithms

�This research was supported by the Advanced Research Project Agency, ARPA order number 144-CS84, monitored by

the Oregon Graduate Institute of Science and Technology and the Army Research Laboratory.

1

often have a �xed search strategy that cannot be changed. On the other hand, optimizers that o�er ex-

tensibility of the search strategy are not very extensible with respect to the query algebra. Furthermore,

there are often no studies of the e�ciency of the resulting optimizers.

The remainder of this paper describes our attempt to develop an alternative framework for construct-

ing query optimizers. First, it should be easy to add new operators as well as new execution algorithms

for existing operators. Second, the framework should allow the Optimizer{Implementor to experiment

with various heuristics that can limit the search space explored by the optimizer. The Optimizer{

Implementor should be able to try di�erent search strategies, and if necessary, to mix multiple strategies

in a single optimizer. Finally, this
exibility should be achieved without compromising the e�ciency of

the optimizer { i.e., an optimizer built in this extensible framework should not be signi�cantly worse in

its space or time requirements than an equivalent \custom-made" optimizer.

In order to address the issues of extensibility and maintainability, OPT++ exploits the object-

oriented features of C++. It de�nes a few key abstract classes with virtual methods. These class

de�nitions do not assume any knowledge about the query algebra or the database execution engine. The

search strategy is implemented entirely in terms of these abstract classes. The search strategy invokes

the virtual methods of these abstract classes to perform the search and the cost-based pruning of the

search space.

An optimizer for a speci�c database system can be written by deriving new classes from these abstract

classes. Information about the speci�c query algebra and execution engine for which the optimizer is

built, and the search space of execution plans to be explored, are encoded in the virtual methods of these

derived classes. The C++ inheritance mechanism ensures that the search strategy of the optimizer does

not have to be changed when this is done.

Furthermore, the search strategy itself is a class with virtual methods that can be over-ridden. Thus,

new classes can be derived from this class to implement di�erent search strategies. OPT++ comes

equipped with a number of search strategies that can be directly used by the Optimizer{Implementor.

In addition, the Optimizer{Implementor can implement new search strategies by deriving new classes

from the provided search strategy classes and rewriting the virtual methods.

An optimizer built using OPT++ consists of three components: the \Search Strategy" component

determines what strategy is used to explore the search space (e.g., dynamic-programming, randomized,

etc.), the \Search Space" component determines what that search space is (e.g., space of left-deep join

trees, space of bushy join trees, etc.), and the \Algebra" component determines the actual logical and

physical algebra for which the optimizer is written. OPT++ strives for separation of these components

and, to a large extent, provides an architecture in which each of these components can be changed with

minimum impact on the other components.

The remainder of this paper is organized as follows. Related work is presented in Section 2. Section

3 describes the design of our optimizer. Section 4 discusses our experiences to date using our optimizer

framework, illustrating the ease of use as well as the e�ciency of OPT++. In section 5 we present our

conclusions.

2

2 Related Work

Extensible query optimizers proposed in the literature fall mainly into two categories: those that o�er

a �xed search strategy and allow the easy addition of new algorithms and operators, and those that

allow the search strategy itself to be extensible. In OPT++ we have tried to achieve both these goals

by coming up with a design in which the search strategy itself is extensible, and, for any search strategy

implemented using this design, the addition of new algorithms and operators to the system is easy.

Most optimizers that allow extensibility of the query algebra propose some form of a rule-based

system that uses rewrite rules to describe transformations that can be performed to optimize a query

expression [Fre87, Gra87, PHH92, FG91]. These systems usually o�er a more-or-less �xed search strategy

that is di�cult to modify or extend.

Freytag [Fre87] describes an architecture in which the translation of a query into an executable plan

is completely based on rules. He describes a System-R style optimizer that can be built using various

sets of rules. One set of rules is used to convert the query into an algebraic tree. Other sets of rules are

used to generate access paths, join orderings, and join methods in that order.

The optimizer developed as a part of the Starburst project [LFL88, HP88] uses a two step process to

optimize queries. The �rst phase uses a set of production rules to transform the query heuristically into

an equivalent new query that (hopefully) o�ers both faster execution than the old query and is better

suited for cost-based optimization. In the second phase, query processing alternatives are speci�ed using

grammar{like production rules. Each \non-terminal" in the grammar can have multiple production rules

(suggesting execution alternatives) and conditions of applicability. These rules are used to construct an

optimal execution plan in a bottom up fashion similar to the System-R optimizer. Cost estimates are

used for choosing between alternatives.

This approach has several limitations. The rewrite phase (�rst phase) uses equivalence transfor-

mations to rewrite the query heuristically. While such heuristic transformations work in a number of

cases, the heuristics sometimes make incorrect decisions because they are not based on cost estimates.

The second phase (the cost-based optimizer) is built using grammar{like rules that are used to build

bigger and bigger plans. While this approach is well suited for access method and join enumeration, it is

not clear how this can be used to optimize queries containing non-relational operators and complicated

transformations.

The optimizers generated by the Exodus Optimizer Generator [GD87] and the Volcano Optimizer

Generator [GM93] use algebraic equivalence rules to transform an operator tree for a query into other,

equivalent operator trees, and use implementation rules to determine what algorithms are used to imple-

ment the various operators. The algebraic transformation rules are used to generate all possible operator

trees that are equivalent to the input query. The implementation rules are used to generate access plans

corresponding to the operator trees.

Like the Volcano Optimizer Generator and the Starburst optimizer, OPT++ incorporates extensible

speci�cation of logical algebra operators, execution algorithms, logical and physical properties, and

selectivity and cost estimation functions. Interesting physical properties, input constraints for execution

algorithms and enforcers (\glue" operators) are also supported. OPT++ can be used to emulate both,

the Starburst as well as the Exodus/Volcano based optimizers. The search strategies that are used in

those optimizer generators are both built into OPT++. The constructs allowed in OPT++ can be used

3

to implement the transformation rules and implementation rules of Volcano and the rewrite rules and

production rules of Starburst. In addition, OPT++ has several advantages. First, those optimizers

o�er a more or less �xed search strategy while OPT++ o�ers a choice of di�erent strategies. In fact,

the search strategy in OPT++ is extensible and can be modi�ed to �t the optimization problem, if

necessary. Also, OPT++ o�ers the ability to mix the constructs from the two optimizers. Speci�cally,

Volcano-like algebraic transformation rules can be mixed with System-R style building up of operator

trees if necessary and feasible. Our experience with the implementation of an optimizer using OPT++

shows that this
exibility is achieved without sacri�cing performance.

Various architectures have been proposed to allow extensible control over the search strategy of an

optimizer. The region-based optimizer architecture of Mitchell et al. [MDZ93], the modular optimizer

architecture by Sciore and Sieg [SJ90], and the blackboard architecture of Kemper, Moerkotte and

Peithner [KMP93], are all based on the concept of dividing an optimizer into regions that carry out

di�erent parts of the optimization. A query then has to pass through these various regions to be

optimized. They di�er in the methods used to pass control between the various regions. In [SJ90]

control passes from one region to another in a �xed sequence. In [MDZ93] there is a hierarchy of regions

in which the parent region dynamically controls the sequence in which the query passes through the

various regions while being optimized. In the blackboard approach [KMP93], knowledge sources are

responsible for moving the queries between regions.

All these architectures describe very general frameworks for extensible query optimization that sup-

port multiple optimizer control strategies and allow addition of new control strategies. By making very

speci�c assumptions about the kinds of manipulations that are allowed on the operator trees and access

plans, OPT++ is able to put a lot of the functionality of an optimizer into the part of the code that

does not depend upon the speci�c query algebra. This makes it much easier to write an optimizer from

scratch in OPT++ than in any of the systems discussed above. In spite of these assumptions, a number

of di�erent search strategies can be implemented in OPT++ quite easily. Finally, while addition of

algorithms and operators for any search strategy remains easy in OPT++, it is not clear how easy it is

in these other systems.

Lanzelotte and Valduriez [LV91] also describe an object-oriented design for an extensible query

optimizer. The design of the search strategy code in OPT++ is inspired by this work. However,

OPT++ di�ers in its modeling of the query algebra and the search space. In particular, OPT++ has a

clear separation between the logical algebra (operator trees) and the physical algebra (access plans). We

believe this separation is necessary for e�ciency of the optimizer as well as for clarity and extensibility.

Although [LV91] discusses extensibility of the search strategy in detail, it is not clear how extensible

their design is in terms of adding new operators and algorithms and modifying the search space explored,

or how such changes would interact with one another or with the search strategy.

3 OPT++ System Design

3.1 Basic Concepts

We assume that a query can be logically represented as an operator tree. An operator tree is a tree in

which each node represents a logical query algebra operator being applied to its inputs. For example,

4

Select * from Emp, Dept
where Emp.dno = Dept.dno
and Emp.name = "Lee"

Emp

Select
Emp.name = "Lee"

Join
Emp.dno = Dept.dno

Dept
Emp

Emp.name = "Lee"

Emp.dno = Dept.dno

Dept

LoopsJoin

SelectScan

(a) SQL Query (b) Operator Tree (c) Access Plan

Figure 1: Query Representations

Figure 1(a) shows an SQL query and Figure 1(b) shows that query represented as a tree of relational

operators. A given query can be represented by one or more operator trees that are equivalent.

One or more physical execution algorithms can be used in a database for implementing a given query

algebra operator. For instance, the join operator can be implemented using nested-loops or sort-merge

algorithms. Replacing the operators in an operator tree by the algorithms used to implement them

gives rise to a \tree of algorithms" known as an access plan or an execution plan [SAC+79]. Figure 1(c)

shows one possible access plan corresponding to the operator tree in Figure 1(b). Each operator tree, in

general, will have a number of corresponding access plans.

QUERY OPTIMIZER

Search Strategy

Abstract
Classes

Derived Classes

Optimizer
Implementor
writes this
code

Runtime
Binding

OPT++ provides
this code

Figure 2: Basic System Design

During the course of query optimization, a query optimizer must generate various operator trees that

represent the input query (or parts of it), generate various access plans corresponding to each operator

tree, and compute/estimate various properties of the operator trees and access plans (for example,

cardinality of the output relation, estimated execution cost, etc.). In the rest of this section, we describe

how this is implemented in OPT++ in a query-algebra-independent manner.

As mentioned earlier, a key feature of OPT++ is that a few abstract classes and their virtual methods

are de�ned a priori and the search strategy is written entirely in terms of these classes. Figure 2 gives

an overview of the OPT++ architecture.

We �rst describe the abstract classes that OPT++ uses to represent operator trees and access

5

plans and compute their properties. We then describe the abstract classes that it uses to generate and

manipulate di�erent operator trees and their corresponding access plans.

3.2 Representing Operator Trees and Access Plans

In this section, we describe the Operator and Algorithm abstract classes. These classes are used to

represent operator trees and access plans, and for computing their properties.

For each abstract class, we describe what the abstract class represents, and the virtual methods on

it. We describe how the search strategy uses that abstract class. To illustrate, we give examples of

actual classes that an Optimizer{Implementor might derive from these abstract classes to implement a

simple relational query optimizer.

3.2.1 The Operator Class

DB−RELATION

OPERATOR

SELECT JOIN

Figure 3: Operator Class Hierarchy for a Relational Optimizer

The abstract Operator class represents operators in the query algebra. From the Operator class the

Optimizer{Implementor is expected to derive one class for each operator in the actual query algebra. An

instance of one of these derived operator classes represents the application of the corresponding query

language operator. As an example, the classes that an Optimizer{Implementor might derive from the

Operator class to implement a simple SQL optimizer are shown in Figure 31. The Select and Join

classes represent the relational select and the relational join operators respectively. The DBRelation

operator is explained in the next paragraph. In this SQL optimizer, an instance of the Select operator

will represent an application of the select operator to one input relation, and an instance of the Join

operator will represent an application of the join operator to two input relations.

The inputs of an operator can either be database entities (for example, relations for a relational

database) that already exist in the database, or they can be the result of the application of other

operators. An operator tree can thus be represented as a tree of instances of the operator class (more

accurately, an instance of a class derived from the abstract Operator class). Each operator instance

represents the corresponding query language operator being applied to the output produced by the child-

nodes of that operator in the operator tree. Dummy operators serve as leaf nodes of this operator tree.

These dummy operators represent database entities that already exist in the database. For example,

the relations in the from clause of an SQL query are represented by the dummy DBRelation operator

in all our examples.

1In all our �gures, classes are represented by ovals and an arrow between classes indicates inheritance.

6

DB−RELATION DB−RELATION

SELECT

JOIN
Emp.dno = Dept.dno

DeptEmp

Emp.name = "Lee"

Figure 4: An Example Operator Tree

Figure 4 shows an example of an operator tree2. (This operator tree corresponds to the query shown

in Figure 1.) The two instances of the DBRelation class represent the two relations in the from clause

of the query { Emp and Dept. The instance of the Select class represents a selection predicate being

applied to the Emp relation. The instance of the Join class represents the Dept relation being joined to

the result of the selection.

DB−RELATION

RELS: Emp, Dept

Emp.dno = Dept.dno

RELS: Emp

RELS: Emp
PREDS:

RELS: Dept
PREDS:

−−

−−

DB−RELATION

SELECT

JOIN
Emp.dno = Dept.dno

Dept

Emp

Emp.name = "Lee"

PREDS: Emp.name = "Lee"

PREDS: Emp.name = "Lee"

Operator Instance

TreeDescriptor Instance

Figure 5: An Example Operator Tree with its Tree Descriptors

During the course of optimization, the optimizer needs to compute and keep track of the properties

of the resultant output of an operator tree. For example, a simple relational optimizer needs to estimate

properties such as the cardinality, or the size of the relation resulting from the execution of an operator

tree. Since such information depends upon the query algebra, OPT++ has to rely on the Optimizer{

Implementor to provide these properties. To do this, the Optimizer{Implementor is expected to de�ne

a TreeDescriptor class that stores information about an operator tree. The information stored could

be logical algebraic properties (e.g., set of relations already joined in, predicates applied), estimated

properties (e.g., number of tuples in output) or any other information of interest to the Optimizer{

2To distinguish classes from class instances, we have used ovals to represent classes and boxes to represent instances in our

�gures. Thus class hierarchies will be drawn using ovals, while operator trees and access plans will be drawn using boxes.

7

Implementor.

Every operator instance contains a pointer to an instance of the TreeDescriptor class, that stores

information about the operator tree rooted at that operator instance. Figure 5 reproduces the operator

tree of Figure 4 showing the TreeDescriptor instances associated with each operator instance. In this

example, each TreeDescriptor instance stores all the relations joined in and all the predicates applied

by the whole operator tree rooted at the corresponding operator instance.

With the TreeDescriptor class the Optimizer{Implementor has to provide an IsEquivalentmethod

that determines whether two TreeDescriptor instances are equivalent. Two TreeDescriptor instances

should be equivalent if the corresponding operator trees are algebraically equivalent. The TreeDescrip-

tor also should have an IsCompleteQuerymethod that determines whether the corresponding operator

tree represents the whole query or just a sub-computation.

The Operator class has a virtual method called DeriveTreeDescriptor. This is invoked on an

operator instance to construct the TreeDescriptor object for the operator tree rooted at that operator

instance, given the TreeDescriptor instances of its inputs.

The Operator class has another virtual method called CanBeApplied that determines whether that

operator can be legally applied to given inputs according to the rules of the query algebra.

Given an operator tree, the search strategy can compute the TreeDescriptor for it by invoking the

DeriveTreeDescriptormethod on each of the operator instances in the tree. Note that the search strat-

egy just invokes the methods on the abstract Operator class and does not need to have any information

about the actual class of each instance. Through runtime binding, the proper DeriveTreeDescrip-

tor method is invoked and the correct TreeDescriptor computed. Thus the search strategy (which is

implemented in terms of the abstract Operator class) can compute the correct TreeDescriptors for

an operator tree even though it has no knowledge of the actual operators in the query algebra. Then

by invoking the IsCompleteQuery method on the resultant TreeDescriptor instance it can determine

whether that operator tree represents the complete input query. Similarly it can determine whether two

operator trees are equivalent using the IsEquivalentmethod. It can invoke the CanBeAppliedmethod

on the operator instances in an operator tree to determine whether that operator tree is legal.

3.2.2 The Algorithm Class

Representation of access plans is very similar to that of operator trees. The Algorithm abstract class

is used to represent physical execution algorithms used to implement operators in the database system.

The Optimizer{Implementor is expected to derive one class from the Algorithm class to represent each

of the actual algorithms in the system.

Figure 6 shows the algorithm classes that were derived from the abstract Algorithm class for our

simple SQL optimizer. The HeapFile and Index algorithms are dummy algorithms for the DBRela-

tion operator as explained earlier. The SelectScan algorithm used to implement the Select operator

represents a sequential scan of a HeapFile that outputs tuples satisfying a select-predicate. The Ind-

exSelect uses a B-Tree Index to implement the same operation. NestedLoopsJoin and MergeJoin are

algorithms to implement the Join operator. The Sort algorithm is not associated with any operator,

but is used to enforce a sort-order among the tuples of a relation.

An access plan can thus be represented as a tree of instances of algorithm classes. As a special

8

ALGORITHM

HEAP−FILE INDEX SELECTSCAN INDEXSELECT MERGEJOIN SORT
NESTED−
LOOPSJOIN

Figure 6: Algorithm Class Hierarchy for a Relational Optimizer

Emp.dno = Dept.dno

Emp.name = "Lee"

INDEX
on Emp.name

HEAP−FILE
Dept

INDEXSELECT

NESTED−LOOPS−JOIN

Figure 7: An Example Access Plan

case, we note that leaf nodes of access plans are represented by dummy \algorithms" representing access

paths that exist on the database entities. For example, a relation may be accessed either as a sequential

(heap) �le or via an index. We use the HeapFile and Index dummy algorithm classes to represent these

cases in our examples. Note that these algorithm classes are associated with the dummy DBRelation

operator class de�ned in the previous section.

Figure 7 shows an example access plan. (This is an access plan corresponding to the operator tree

in Figure 4.) An Index on Emp.name is used by the IndexSelect algorithm to perform the selection on

`Emp.name = "Lee"'. The NestedLoopsJoin algorithm takes the result of the IndexSelect and joins

it with the Dept relation using the HeapFile access method (implying a sequential scan).

Similar to the TreeDescriptor class in the case of operator trees, OPT++ requires a PlanDescri-

ptor class to store physical properties of an access plan. For example, for a relational optimizer the

PlanDescriptor class might store the sort-order of the result. Figure 8 reproduces the access plan of

Figure 7 showing the PlanDescriptor instances associated with each algorithm instance.

The Optimizer{Implementor should provide an IsEquivalentmethod for the PlanDescriptor class

to determine whether the physical properties of two access plans are the same. This class should also

provide an IsInteresting method that speci�es whether the result of the corresponding access plan

has any interesting physical properties3.

The abstract Algorithm class has a DerivePlanDescriptor virtual method. This method is invoked

on an algorithm instance to construct the PlanDescriptor instance for the access plan rooted at the

3A physical property (such as sort-order) is interesting if it might help some later operation to be carried out cheaply. For

example, a sort-order is interesting if it will be useful in a sort-merge join later on [SAC+79].

9

Emp.dno = Dept.dno

COST: 0 COST: 0

Emp.name = "Lee"

HEAP−FILE

SORT−ORDER: −−

INDEX
on Emp.name

SORT−ORDER: Emp.name

SORT−ORDER: Emp.name
COST: 10

COST: 60
SORT−ORDER: −−INDEXSELECT

Dept

NESTED−LOOPS−JOIN

Algorithm Instance

PlanDescriptor Instance

Figure 8: An Example Access Plan with its Plan Descriptors

algorithm instance, given the PlanDescriptor instances of its inputs.

The Algorithm class also has a virtual method called Cost that computes the estimated cost of

executing the algorithm with the given inputs. This cost is used by the search strategy for pruning

sub-optimal plans.

In addition, the Algorithm class has an InputConstraint virtual method. This method indicates

what physical properties an input should have for it to be usable by that algorithm. For example,

the merge-join operator requires that its inputs be sorted on the join attributes. As described in a

later section, the search strategy will try to use this information to automatically enforce those physical

properties.

A database system might have special execution algorithms that do not correspond to any operator

in the logical algebra, for example sorting and decompression. The purpose of these algorithms is not

to perform any logical data manipulation but to enforce physical properties in their outputs that are

required for subsequent query processing algorithms. These are referred to as enforcers in the Volcano

Optimizer Generator [GM93], and are comparable to the glue operators in Starburst [LFL88]. Classes

corresponding to such enforcers should also be derived from the Algorithm class. For example, in a

relational query optimizer, the Sort algorithm is an enforcer that can be used to ensure that the inputs

of the MergeJoin algorithm are sorted on the join attribute.

Given an access plan, the search strategy can use the virtual methods of the abstract Algorithm

class to determine properties of the access plan, estimate its cost, and determine equivalence of di�erent

access plans. All of this is achieved by invoking these methods on the abstract Algorithm class without

any knowledge of the actual algorithms in the database system.

3.3 Generating Operator Trees and Access Plans

In the previous section we saw how operator trees and access plans are represented in OPT++. If the

search strategy is given an operator tree or an access plan, we saw how it can compute its properties

and compare it with other trees or plans by using the virtual methods of the Operator and Algorithm

10

abstract classes.

In this section, we describe how the various operator trees and access plans are generated by the

search strategy during the course of optimization.

3.3.1 The TreeToTreeGenerator Class

Classes derived from the TreeToTreeGenerator abstract class are used to generate various operator

trees. These classes have a virtual method called Apply that takes an existing operator tree and creates

one or more new operator trees.

Let us consider the System-R style [SAC+79] search strategy to illustrate the concept behind the

TreeToTreeGenerator class. Such an optimizer starts with single relations and then builds bigger and

bigger operator trees from them by �rst applying selections and then applying joins to them. At each

step, the search strategy picks an existing operator tree and then expands it to get a bigger operator

tree by applying a new select operation or a join operation at the top of the tree.

The process of expanding an existing operator tree by applying one more operator to it and generating

new trees can be accomplished by using TreeToTreeGenerator classes.

TREETOTREE
GENERATOR

SELECT
EXPAND

INITIALTREE
GENERATOR

JOIN
EXPAND

Figure 9: Example TreeToTreeGenerator Class Hierarchy

Speci�cally, to implement a relational System-R style optimizer, the Optimizer{Implementor can

derive from the TreeToTreeGenerator abstract class a SelectExpand class to generate applications of

the Select operator and a JoinExpand class to generate applications of the Join operator. See Figure 9.

The SelectExpand::Apply method is expected to take an operator instance (representing an operator

tree) and create one or more new instances of the Select operator representing application of some

selection to the input operator tree. Similarly the JoinExpand::Apply method should create various

Join instances representing di�erent ways of applying a join to the given input.

Figure 10(b) illustrates the JoinExpand::Apply method being invoked during the optimization of

the query in Figure 10(a). The �gure shows an instance of the Select operator that represents the

predicate `Emp.name = "Lee"' being applied to the Emp relation. The JoinExpand::Apply method is

invoked in order to expand the operator tree rooted at that Select operator instance. Since the result

of the select can be joined either with the Dept relation or with the Job relation, two instances of the

Join operator are created as shown in the �gure.

The TreeToTreeGenerator class also has a virtual method called CanBeApplied that determines

whether that TreeToTreeGenerator can be applied to a given operator instance.

One class derived from the TreeToTreeGenerator class is designated by the Optimizer{Implementor

as the InitialTreeGenerator. The Apply method of this class is used by the search strategy to start

11

SELECT

DB−RELATION DB−RELATION

JOIN

JobDept

Emp.dno = Dept.dno

Emp.name = "Lee"

DB−RELATION
Emp

Select * from Emp, Dept, Job
where Emp.name = "lee"
and Emp.dno = Dept.dno
and Emp.jno = Job.jno

JOIN

(a)
(b)

Emp.jno = Job.jno

Operator Instances already existing
Operator Instances created by JoinExpand

Figure 10: Application of JoinExpand::Apply

the optimization process. For the relational optimizer the InitialTreeGenerator creates one DBRela-

tion instance for each relation in the from clause. After that, the search strategy picks some operator

instance (representing an operator tree) and generates new operator trees from it by invoking the Apply

method of various TreeToTreeGenerator classes on it. The CanBeAppliedmethod is used to determine

whether the TreeToTreeGenerator should be applied to that operator instance. This process can be

repeated to generate various operator trees corresponding to the input query.

Note that the search strategy does not need to know any details about the TreeToTreeGenerator

classes in the system. All it needs is a list containing a pointer to one instance of each of the TreeTo-

TreeGenerator classes. By invoking the virtual methods of the TreeToTreeGenerator abstract class

on these instances, the search strategy can generate all operator trees required for optimization.

3.3.2 The TreeToPlanGenerator Class

An access plan can be generated from an operator tree by replacing each operator instance in the operator

tree by an instance of an algorithm class that can be used to implement that operator. Classes derived

from the TreeToPlanGenerator abstract class are used to generate algorithm instances corresponding

to an operator instance.

The TreeToPlanGenerator abstract class has a virtual method called Apply that takes an operator

instance as an input parameter and creates one or more new algorithm instances representing di�erent

ways of using physical execution algorithms to execute the operation represented by that operator

instance.

TREETOPLAN
GENERATOR

HEAP−FILE
GENERATOR

INDEX
GENERATOR

SELECTSCAN
GENERATOR

INDEXSELECT
GENERATOR

MERGEJOIN
GENERATOR

NESTED−
LOOPSJOIN
GENERATOR

Figure 11: Example TreeToPlanGenerator Class Hierarchy

12

For example, consider a relational optimizer. From the TreeToPlanGenerator class the Optimizer{

Implementor might derive one class corresponding to each algorithm in the system. Each of these classes

takes an operator instance and creates one or more algorithm instances indicating how the corresponding

algorithm can be used to implement that operation. Figure 11 shows the classes derived from the Tree-

ToPlanGenerator class.

Emp.dno = Dept.dno

Emp.dno = Dept.dno
LOOPSJOIN

Emp.dno = Dept.dno
MERGEJOIN

JOIN

Operator Instance Algorithm Instances

LoopsJoinGenerator::Apply

MergeJoinGenerator::Apply

Figure 12: Examples of TreeToPlanGenerator::Apply

Figure 12 shows some examples of TreeToPlanGenerator::Apply being applied to a join operator

instance. As can be seen, the NestedLoopsJoinGenerator::Apply results in an instance of the Nest-

edLoopsJoin class being created while the MergeJoinGenerator::Apply results in an instance of the

MergeJoin class being created.

Given an operator tree, the search strategy can invoke the Applymethod of various TreeToPlanGene-

rator classes on each of the operator instances in the tree to generate various access plans corresponding

to the operator tree.

The TreeToPlanGenerator class has a CanBeApplied virtual method that determines whether that

TreeToPlanGenerator can be applied to the given operator instance.

Note that the search strategy does not need to know any details about the actual TreeToPlanGen-

erator classes in the system. All it needs is a list containing a pointer to one instance of each of the

actual TreeToPlanGenerator classes. By using this list and invoking virtual methods on the instances

in this list, the search strategy is able to enumerate all the access plans for any operator tree.

3.3.3 The PlanToPlanGenerator Class

The PlanToPlanGenerator class is used to further modify an access plan after it has been generated.

The PlanToPlanGenerator::Apply virtual method takes an algorithm instance (representing an access

plan) and creates one or more new algorithm instances each representing some other access plan.

An important use of this class is to automatically insert into an access plan instances of enforcers that

can change the physical properties of the output of some access plan. This might be required in order to

satisfy input constraints of some algorithm. For instance, in a relational optimizer, the SortEnforcer

class can be derived from the PlanToPlanGenerator class to enforce various sort-orders on results of

access plans.

Figure 14 illustrates the use of the SortEnforcer::Apply virtual method. This method is invoked

with the IndexSelect instance as an input parameter; it creates a new instance of the Sort algorithm

13

PLANTOPLAN
GENERATOR

SORT
ENFORCER

Figure 13: PlanToPlanGenerator Class Hierarchy

SORT
Emp.dno

Emp.name = "Lee"

INDEXSELECT

INDEX
Emp::name

Algorithm Instances already existing
Algorithm Instance created by SortEnforcer

Figure 14: Use of SortEnforcer::Apply to enforce a sort-order

(enforcer) as shown in the �gure.

The PlanToPlanGenerator class also has a CanBeApplied virtual method that determines whether

the PlanToPlanGenerator can be applied to the given input.

During the course of optimization, when the search strategy is building various access plans using

the TreeToPlanGenerator classes, it invokes the InputConstraint method whenever a new algorithm

instance is created. If it turns out that the inputs of that algorithm instance do not satisfy the input

constraints, it attempts to rectify the situation by applying an appropriate PlanToPlanGenerator. The

search strategy uses the CanBeApplied virtual method of the PlanToPlanGenerator classes to determine

which generators can be used to enforce the given properties, and invokes the Apply method to create

new access plans that satisfy the corresponding input constraints. Thus the enforcers will get applied

automatically without the Optimizer{Implementor having to worry about them.

3.4 The Search Strategies

So far, we have seen the Operator, Algorithm, and various tree and plan Generator classes. As

described in the previous sections, any search strategy that is implemented entirely in terms of these

abstract classes and their virtual methods becomes independent of the query algebra in the sense that

the actual operators, algorithms and generators in the system can be modi�ed without modifying the

search strategy code.

A number of search strategies have been implemented in OPT++ in this query-algebra-independent

manner. The implementation of the various search strategies is loosely modeled on the object-oriented

scheme described in [LV91]. OPT++ de�nes a SearchStrategy abstract class with virtual methods,

and each of the search strategies in OPT++ is actually implemented as a class derived from the Search-

14

Strategy abstract class. Any of these search strategies can be used for optimization by the Optimizer{

Implementor by declaring an object of the corresponding class and invoking the Optimize virtual method

on that object. Another consequence of this design is that Optimizer{Implementor can modify the

behavior of any search strategy by deriving a new class from it and rede�ning some of the virtual

methods. Due to space constraints, we do not describe this in detail. Refer to [LV91] to get an idea

of how this works. In this section we concentrate on describing how the various search strategies

are implemented in terms of the Operator, Algorithm, and Generator abstract classes, and in the

next section we describe how the Optimizer{Implementor can easily switch from one search strategy to

another.

We describe below the various search strategies that are currently implemented in OPT++. The

\Bottom-up" search strategy is similar to the one used by the System-R optimizer [SAC+79]. The

\Transformative" search strategy is based upon the search engine of the Volcano Optimizer Gener-

ator [GM93]. Finally, three randomized search strategies, Iterated Improvement [SG88], Simulated

Annealing [IW87], and Two Phase Optimization [IK90], have been implemented.

3.4.1 The Bottom-up Search Strategy

This search strategy can be used to implement optimizers that use bottom-up dynamic-programming

similar to the System-R optimizer [SAC+79].

The InitialTreeGenerator is invoked to initialize the collection of operator trees. To generate

bigger trees, the search strategy picks an existing operator tree and expands it. To expand an operator

tree, it determines what TreeToTreeGenerators can be applied to the operator instance at its root by

invoking the CanBeApplied method of the various TreeToTreeGenerators. Then the Apply method of

each of the applicable TreeToTreeGenerators is invoked to get new operator trees.

For each new operator tree, all the corresponding access plans are generated. This is done by applying

various TreeToPlanGenerators to the operator instances in the tree to get the corresponding algorithm

instances.

Cost-based pruning of access plans is done in a manner similar to the techniques used by the System-R

optimizer. Whenever a new access plan is created, The virtual methods of the Algorithm class are used

to determine the cost of that access plan, to determine whether it has any interesting physical properties,

and to locate all other access plans that are equivalent to it. From this set of equivalent access plans,

only the cheapest plan and those plans that have interesting physical properties are retained. All others

are deleted4.

Optimization is complete when none of the operator trees can be further expanded. At this point

the cheapest access plan that represents the complete input query is returned as the optimal plan. The

IsCompleteQuery method is used to determine whether or not an access plan represents the complete

input query.

4To \delete" an access plan, only the algorithm instance at the root of that access plan is actually deleted. The other

algorithm instances in the access plans are not deleted because they maybe shared by other access plans.

15

3.4.2 The Transformative Search Strategy

In Section 3.3.1 we have only given examples of TreeToTreeGenerators that expand a given tree by

applying a new operator to it. However, we can also have TreeToTreeGenerator classes that transform

an operator tree into another, algebraically-equivalent operator tree. In other words, a class derived from

the TreeToTreeGenerator class can represent an algebraic transformation rule (such as those used by

the Volcano Optimizer generator). The CanBeApplied method determines whether the transformation

rule is applicable to a given operator tree, and the Apply method creates the new tree that results from

the transformation.

JOIN

Emp.dno = Dept.dno

SELECT

Emp Dept
DB−RELATION DB−RELATION

Emp.name = "Lee"

JOIN

Emp.dno = Dept.dno

Emp Dept
DB−RELATION DB−RELATION

Emp.name = "Lee"
SELECT

Tree (a) Tree (b)

Figure 15: A Rule-based Transformation

Figure 15 shows an example of a transformative TreeToTreeGenerator being applied. Assume that

a class called SelectPushDown is derived from the the TreeToTreeGenerator class. This class represents

the following transformation rule: \If a join is immediately followed by a select, and if the select predicate

only references attributes from the left input of the join, then the select can be pushed below the join

into its left input tree." Figure 15 shows the result of SelectPushDown::Apply being invoked on an

operator tree. It is applied to Tree (a) and the new operator tree resulting from the transformation is

shown in Tree (b). This new tree is generated by creating the two new operator instances shown in the

oval in Tree (b). The new Select operator instance represents the selection predicate being applied to

Emp relation. The new Join operator instance represents the result of that select being joined with the

Dept relation. When these two new operator instances are created, we have a new operator tree that is

equivalent to the old one.

The search strategy invokes the InitialTreeGenerator to get one operator tree corresponding to the

input query. It then repeatedly applies TreeToTreeGenerators (transformation rules) to the existing

operator trees to generate equivalent operator trees. As before, the CanBeApplied method is used to

determine whether a TreeToTreeGenerator can be applied to an operator tree, and the Apply method

is used to generate the new tree.

The procedure for generation of access plans corresponding to an operator tree, and for their pruning

is similar to that used in the bottom-up search strategy. Note that our TreeToPlanGenerator classes

are analogous to the implementation rules of the Volcano Optimizer Generator [GM93].

Optimization is complete when none of the existing operator trees can be further transformed.

16

3.4.3 Randomized Search Strategies

In this section, we brie
y describe the implementation of the randomized search strategies in OPT++. As

with the Transformative strategy, these algorithms assume that the classes derived from the TreeToTree-

Generator class represent algebraic transformation rules. Here we brie
y describe the implementation

of the Simulated Annealing Algorithm. The implementation of the other algorithms is very similar, and

is omitted for brevity.

The Simulated Annealing algorithm has a a variable called temperature that is initialized before

optimization is begun. The InitialTreeGenerator is then used to generate one complete operator

tree. The TreeToPlanGenerator classes are used to create an access plan corresponding to that operator

tree. After this, at each step a random operator instance in the operator tree is picked for processing.

Then a random TreeToTreeGenerator or a random TreeToPlanGenerator is chosen and applied to

that operator instance. This gives rise to a new access plan. The cost of the new plan is estimated.

The search strategy accepts or rejects the new plan with a probability that depends upon the di�erence

between the costs of the old plan and the new plan, and upon the temperature. If the new plan is

rejected, the new plan is deleted and the old plan remains the current plan. If the new plan is accepted,

the old plan is deleted, and the new plan becomes the current plan.

The temperature is decreased after each step, and the process is repeated. Optimization continues

until the temperature becomes zero and there is no improvement in the cost for some number of steps.

At this point, the current plan is output as the optimal plan.

3.5 Extensibility in OPT++

This section summarizes what is involved in implementing a new optimizer, or extending or modifying

an existing optimizer built using OPT++. Section 4 has some examples of such extensions as applied

to a real optimizer.

3.5.1 Implementing a new Optimizer

Figure 16 shows the overall system architecture of an optimizer implemented using OPT++.

The Search Strategy Component : This represents the code that is provided with OPT++, and

includes the implementations of the various search strategies. This part of the code is completely

independent of the actual query algebra and the database system, and therefore does not have to be

modi�ed to implement a particular optimizer. Thus a large part of the code required for an optimizer

is already provided with OPT++ and does not have to be written by the Optimizer{Implementor.

The Algebra Component : This contains the classes derived by the Optimizer{Implementor from

the Operator and the Algorithm classes, and also the implementation of the TreeDescriptor and

PlanDescriptor classes. This part of the code depends only upon the query algebra and the physical

implementation algorithms available in the database system. Speci�cally, this code does not have to

be changed when the optimizer is modi�ed to use a di�erent search strategy (e.g., switching from a

transformative strategy to simulated annealing) or when the search space explored is changed (e.g.,

switching from left-deep join tree enumeration, to bushy join tree enumeration).

17

TreeToTree
Generator

SearchStrategy

InitialTreeGen JoinExpand

DBRelation

Select

Join

Operator Algorithm

LoopsJoin

SeqScan

LoopsJoin
Gen

IndexGen

TreeToPlan
Generator

PlanToPlan
Generator

Sort
Enforcer

Tree
Descriptor

Plan
Descriptor

Code written by
Optimizer Implementor

Code provided
with OPT++

BottomUp

Transformative SA
II

ALGEBRA COMPONENT

SEARCH
STRATEGY
COMPONENT

2PO

SEARCH SPACES COMPONENT

Figure 16: Implementing an Optimizer in OPT++

The Search Space Component : This contains the classes derived by the Optimizer{Implementor

from the TreeToTreeGenerator, TreeToPlanGenerator, and the PlanToPlanGenerator classes. These

classes are used to decide what operator trees and access plans are generated, and hence play a large

part in controlling the search space that is explored by the search strategy. For example, implementing

a JoinExpand class that only generates joins in which the inner relation is a base relation restricts

the search space to the space of left-deep join trees. On the other hand, implementing a BushyJoin-

Expand class that considers composite inners will generate all bushy trees. In fact, the various join

enumeration algorithms described in [OL90] can each be implemented in OPT++ as a class derived

from the TreeToTreeGenerator class.

3.5.2 Modifying the Optimizer

Changing the logical or physical Algebra : To modify the optimizer to incorporate a new physical

implementation algorithm, a new class corresponding to that algorithm must be derived from the Al-

gorithm class. A new class also must be derived from the TreeToPlanGenerator class to indicate how

this new algorithm can be used to implement the corresponding operator. Thus, adding an algorithm

only involves adding some new classes to the optimizer. None of the existing code needs to be changed.

For instance, a hash-join algorithm can be incorporated into our simple relational optimizer by deriving

18

a HashJoin class from the Algorithm class, and a HashJoinGenerator class from the TreeToPlanGen-

erator class.

Similarly, adding an operator requires deriving a new class from the Operator class and deriving

one or more new classes from the TreeToTreeGenerator class. Algorithms used to implement the new

operator also have to be added as described above.

Changing the Search Space : As mentioned earlier, the search space explored by any search strategy

is controlled by the Generator classes. It can be changed by adding a new Generator class, or by

removing or modifying an existing Generator class. For example, in our simple relational optimizer,

the search space can be changed from the space of left-deep join trees to the space of bushy join trees

by adding a BushyJoinExpand class.

Since all the search strategy code is in the Search Strategy Component, and all the code that depends

only on the query algebra is in the Algebra Component, there is very little code left in the Search

Space Component. Thus changing generator code or adding a new generator is easy. In other words,

experimenting with various di�erent search spaces or optimization techniques is considerably simpli�ed

by the OPT++ architecture.

Changing the Search Strategy : OPT++ o�ers a choice of search strategies, and makes it relatively

easy to switch from one search strategy to another. Often, one search strategy can be replaced by

another without changing any of the code in the \Algebra" or \Search Space" component. This is

the case if the search strategy is changed from the Transformative Strategy to one of the randomized

strategies, or vice versa. Sometimes changing from one search strategy to another might require writing

new TreeToTreeGenerator classes. For example, switching from a bottom-up System-R-like strategy

to a transformative strategy requires replacing all the TreeToTreeGenerator classes (that are based on

the concept of expanding an operator tree) with new TreeToTreeGenerator classes that representing

the transformation rules. However, since there is very little code in the TreeToTreeGenerator classes,

this change is rather easy. We describe a speci�c example in Section 4.

4 Experiences with OPT++

In this section, we describe some experiences we had implementing optimizers using OPT++. We started

with a simple relational optimizer that does System-R style join enumeration and then modi�ed it in

various ways { to change the search space; to extend it to accept a more complex query algebra; and

to change the search strategy used for optimization. This was done with the intention of illustrating

the ease of use and extensibility of OPT++. We also report on some performance studies { including a

performance comparison with an optimizer generated using the Volcano Optimizer Generator [GM93] {

to show that, in spite of its
exibility, OPT++ is e�cient.

4.1 Join Enumeration

In this section we consider a simple relational optimizer that does System-R style join enumeration,

and describe how it was easily extended to consider the space of bushy join trees, and also to consider

cartesian products.

19

Since all the examples used in Section 3 describe this simple relational optimizer, we will not repeat

the details here. Brie
y, the DBRelation, Select, and Join classes were derived from the Operator class

to represent the relational operators, and the HeapFile, Index, SelectScan, IndexSelect, Nested-

LoopsJoin, and MergeJoin classes were derived from the Algorithm class to represent the corresponding

physical implementation algorithms. SelectExpand and JoinExpand were derived from the the Tree-

ToTreeGenerator class. HeapFileGenerator, IndexGenerator, SelectScanGenerator, IndexSelect-

Generator, NestedLoopsJoinGenerator, and MergeJoinGenerator were derived from TreeToPlan-

Generator to indicate how the corresponding algorithms could be used to implement the associated

operators. SortEnforcer is derived from PlanToPlanGenerator to enforce sort orders.

We note that the SelectExpand::Apply method was written so as to apply all selection predicates

as soon as possible (the \select pushdown" heuristic) and the JoinExpand::Applymethod allowed only

single relations as the inner (right-hand) input for the join operation (the \left-deep join trees only"

heuristic). Thus the search space consisted only of operator trees that had the selections pushed down

as far as possible, there were no cartesian products, and the join trees were left deep.

The \Algebra" component that includes the various operator and algorithm classes as well as the

TreeDescriptor and PlanDescriptor classes consists of about 900 lines of code. The \Search Space"

components that includes classes derived from the TreeToTreeGenerator, TreeToPlanGenerator, and

PlanToPlanGenerator classes consists of 150 lines of code. In contrast, the \Search Strategy" compo-

nent, which consists entirely of code that is provided with OPT++ (i.e., the Optimizer{Implementor

does not have to write this code) was about 2500 lines of code. The fact that the search strategy code

is already provided and does not have to be written or modi�ed by the Optimizer{Implementor consid-

erably simpli�ed the task of writing the optimizer. Further, as will become clear later, the fact that the

\Search Space" component is very small (150 lines of code divided over 10 classes) makes it very easy

to experiment with various optimization techniques.

We decided to modify the search space explored to include bushy join trees as well as join trees

that contain cartesian products. To do this we derived the BushyJoinEnumerator and CartesianJoin-

Enumerator classes from the TreeToTreeGenerator class to generate instances of the Join operator

that allowed composite inners (i.e., the inner operand is allowed to be the result of a join), and those

containing cartesian products5. This resulted in the addition of about 150 lines of code to the \Search

Space" component. (Refer to Figure 16.)

As an experimental evaluation of the optimizer, we studied its performance (optimization time and

estimated execution cost) as a function of the number of joins in the input query. For each query size

(number of joins) 10 di�erent queries were generated randomly and optimized. The experiments were

run on a Sun SPARC-10/40 with 32MB of memory. Virtual memory was also limited to 32MB (using

the limit command).

Figure 17 shows the e�ect of di�erent search spaces on the time taken for optimization, and Figure 18

shows the e�ect on the relative estimated execution costs of the optimal plans produced. (Note that

optimization times are shown on a logarithmic scale.)

5These join enumerator classes are based on the schemes described in [OL90].

20

0 5 10 15

Number of Joins

0.01

0.1

1

10

100
O

p
ti

m
iz

at
io

n
 T

im
e

(s
ec

on
d

s,
 lo

gs
ca

le
)

Left-Deep
Bushy
Bushy+Cartesian

0 2 4 6 8 10

Number of Joins

1

2

3

E
st

im
at

ed
 E

xe
cu

ti
on

 C
os

ts
 (

Sc
al

ed
)

Left-Deep
Bushy
Bushy+Cartesian

Figure 17: Comparison of Search Spaces:

Optimization Times (Log-scale)

Figure 18: Comparison of Search Spaces:

Estimated Costs (scaled)

4.2 A More Complex Query Algebra

In this section, we describe how the optimizer was extended to handle a more complex query algebra.

The new algebra allows reference-valued attributes, set-valued attributes, and the use of path-indices.

We extended the optimizer to implement the optimization techniques described in [BMG93]. We

added a Materialize query algebra operator that represents materialization of a reference-valued at-

tribute (in other words, dereferencing a pointer). A corresponding Assembly algorithm class is used

to represent the physical execution algorithm used to implement Materialize [KGM91]. An Unnest

operator class and the corresponding UnnestAlgorithm class is used to represent unnesting of set-valued

attributes.

The MaterializeExpand class derived from the TreeToTreeGenerator class takes an operator tree

and expands it by adding a materialize operation that dereferences a reference-valued attribute present

in its input.

Materialization of a reference-valued attribute can also be achieved using a pointer-based join [SC90].

We specialized the JoinExpand class by deriving a new PointerJoinExpand class from it. This new class

creates instances of the Join operator that actually correspond to materialization of reference-valued

attributes using a pointer-based join.

The UnnestExpand class derived from TreeToTreeGenerator takes an operator tree and expands it

by adding to it an unnest operation that unnests a set-valued attribute present in its input.

The optimizer also had to be extended to handle path-indices. A select predicate involving a path-

expression (like city.mayor.name = "Lee") can be sometimes evaluated using a path-index without

really having to materialize the individual components of the path-expression. For example, if a path-

index exists on city.mayor.name, the predicate city.mayor.name = "Lee" can be evaluated without

having to materialize the city or mayor objects (see [BMG93] for details).

A new PathIndexSelect algorithm was derived from the Algorithm class to capture such path-index

scans. A PathIndexScanGenerator class was derived from the TreeToPlanGenerator class to replace

21

occurrences of a string of materialize operators followed by a select operator in an operator tree by a

single PathIndexSelect algorithm, if possible6.

This extension of the optimizer to handle the new query algebra constructs resulted in an addition

of about 350 lines of code to the \Algebra" component (most of it for cost and selectivity estimation)

and about 100 lines of code to the \Search Strategy" component. Considering the complexity of the

extensions to the algebra, and compared to the size of the whole optimizer, the changes were rather easy.

4.3 A Transformative Optimizer

As a third test of OPT++, we decided to change the optimizer from a bottom-up dynamic programming

optimizer to one that uses algebraic transformation rules. In other words, a shift from the \Bottom-

Up" strategy to the \Transformative" strategy. This change required that new classes be derived from

the TreeToTreeGenerator class to represent the transformation rules. One class was used for each

transformation rule. For instance, the JoinAssociativity class was used to represent the associativity

of the join operator, while the SelectPushDown class was used to capture the property that selects can

be pushed down under joins.

Modifying the whole optimizer to use the transformative paradigm required the addition of about

250 lines of code in the form of TreeToTreeGenerators representing the transformation rules7. We note

that no code in the \Algebra" component had to be changed, while in the \Search Space" component,

only new TreeToTreeGenerators had to be added. The old TreeToPlanGenerator and PlanToPlan-

Generator classes were used unchanged.

The Transformative Search Strategy in OPT++ is based upon the search engine of the Volcano Opti-

mizer Generator. To validate our implementation of that strategy, and to show that its performance does

not su�er even though it has been implemented in the more
exible OPT++ framework, we compared

it to an optimizer generated using Volcano. Using the Volcano Optimizer Generator we implemented an

optimizer equivalent to our Transformative Optimizer. The two optimizers were equivalent in the sense

that they used the same transformation rules and exactly the same code for cost estimation, selectivity

estimation, etc..

Figures 19 and 20 compare the two optimizers in terms of optimization times and memory consumed

for randomly generated queries of increasing sizes. As before, the experiments were run on a Sun SPARC-

10/40 with 32MB of memory. The �gures show us that the performance of the Transformative Search

Strategy of OPT++ is almost as good as that of the Volcano search engine. We see approximately a

degradation of about 5% in the optimization times, while space utilization is roughly equivalent. (The

advantage of OPT++ of course lies in the fact that it is a more general framework and in addition to all

the features that Volcano provides, it also provides
exibility in terms of the search strategy including

the ability to mix-and-match di�erent search strategies.)

6In the interests of space and clarity, we do not describe our implementation of the mechanism by which components of

the path that are not materialized into memory in because of the existence of the path-index are automatically materialized

if they are needed for some other operation. The implementation is very similar to the scheme described in [BMG93].
7In the next section we shall see that a switch from the Transformative strategy to one of the Randomized strategies is

much easier than this.

22

0 5 10

Number of Joins

0.01

0.1

1

10

O
p

ti
m

iz
at

io
n

 T
im

e
(s

ec
on

d
s,

 lo
gs

ca
le

)

Opt++
Volcano

0 5 10

Number of Joins

2

4

6

M
em

or
y

re
qu

ir
em

en
ts

 (
M

B
)

Opt++
Volcano

Figure 19: OPT++ vs. Volcano: Opti-

mization Times (Log-scale)

Figure 20: OPT++ vs. Volcano: Mem-

ory Requirements

4.4 Randomized Strategies

Finally, we modi�ed the transformative optimizer to use the randomized search strategies available with

OPT++. The only change required for this is to replace the Transformative Search Strategy object

by an object of the required Randomized search strategy. Thus, changing from the Transformative

search strategy to either Simulated Annealing, Iterated Improvement or Two Phase Optimization (or

vice versa) can be trivially accomplished by changing one line of code.

We compared the performance of all the di�erent search strategies in terms of the time taken to opti-

mize randomly generated queries of increasing sizes, and the quality of the plans produced. The stopping

conditions and other parameters for the randomized search strategies were as described in [IK90]. Fig-

ures 21 and 22 show the performance results obtained. Qualitatively, they con�rm the �ndings of [Kan91]

that for smaller queries the exhaustive algorithms consume much less time for optimization than the

randomized algorithms and yet produce equivalent or better plans, while for larger queries, the ran-

domized algorithms take much less time to �nd plans that are almost as good as those found by the

exhaustive algorithms. They also con�rm the �ndings of [IK90] that Two Phase Optimization performs

better than Simulated Annealing or Iterated Improvement.

In Figure 23, the memory requirements of the di�erent strategies are presented. The randomized

strategies require a negligible amount of memory irrespective of the size of the input query, while the

exhaustive strategies require exponentially increasing amounts of memory. Hence, for queries larger

than those shown in Figure 21, the randomized strategies will continue to give reasonable performance

while the exhaustive strategies will fail due to lack of enough memory. We also note that although the

Bottom-Up and Transformative search strategies have comparable performance in terms of optimization

time and quality of plans produced (because both are exhaustive strategies and explore the same search

space), the Bottom-Up strategy has a signi�cant advantage in space consumption as it can perform more

aggressive pruning of operator trees.

23

6 8 10 12 14

Number of Joins

1

10

100

O
p

ti
m

iz
at

io
n

 T
im

e
(s

ec
on

d
s,

 lo
gs

ca
le

)

Bottom-Up
Transformative
Iterated Improvement
Simulated Annealing
Two Phase Optimization

6 8 10 12 14

Number of Joins

0.99

1

1.01

1.02

E
st

im
at

ed
 E

xe
cu

ti
on

 C
os

ts
 (

Sc
al

ed
) Bottom-Up, Transformative

Iterated Improvement
Simulated Annealing
Two Phase Optimization

Figure 21: Comparing Search Strategies:

Optimization Times (Log-scale)

Figure 22: Comparing Search Strategies:

Estimated Costs (Scaled)

6 8 10 12 14

Number of Joins

0

5

10

15

20

25

M
em

or
y

R
eq

ui
re

m
en

ts
 (

M
B

)

Bottom-Up
Transformative
Iterated Improvement
Simulated Annealing
Two Phase Optimization

Figure 23: Comparing Search Strategies: Memory Requirements

24

5 Conclusions and Future Work

In this paper, we have described a new tool for building extensible optimizers. It uses an object-oriented

design to provide extensibility through the use of inheritance and late binding. The design makes it

easy to implement a new optimizer as well as to modify existing optimizers implemented using OPT++.

Extensibility is provided in the form of the ability to easily extend the logical or physical query algebra,

to easily modify the search space explored by the search strategy, and to even change the search strategy.

Our experiences with the implementation of optimizers using OPT++ show that, in addition to being

easy to use and extend, it is also e�cient.

We believe that these features of OPT++ will make it a very useful tool for building query opti-

mizers. First, it can be used for quickly building an e�cient optimizer for a new database system and

experimenting with a number of di�erent optimization techniques and search strategies. Such experi-

mentation can be very useful to an Optimizer{Implementor to compare di�erent optimization strategies

before deciding what strategy is best suited to that database system. Further, having multiple search

strategies provides the option of dynamically determining the search strategy based on the input query

and other criteria. For example, an optimizer could use an exhaustive strategy for small queries and a

randomized strategy for large queries, or it could use bushy join tree enumeration for small queries and

left-deep join tree enumeration for larger queries. Thus OPT++ can be used to build a smart query

optimizer that dynamically customizes its optimization strategy depending upon the input.

We plan to add some more search strategies to the repertoire of strategies available in OPT++. In

particular, the A* heuristic [Pea84, KMP93], and the heuristics described in [Swa89] seem promising.

We also plan to add debugging support to OPT++. Debugging an optimizer remains a complex

and time-consuming task. In particular, determining the source of a bug in an optimizer that produces

sub-optimal plans is di�cult. ([Hel94] discusses some of the di�culties with this.) We plan to incorpo-

rate support for debugging into OPT++, including visual optimizer execution tracing, and automated

detection of potential sources of errors using hints from the Optimizer{Implementor.

Finally, we plan to use OPT++ to study the optimization of complex decision-support queries, like

those included in the TPC-D benchmark [Raa95]. This is a di�cult problem for which OPT++'s ability

to easily experiment with di�erent search strategies and search spaces will be very useful. In addition,

this will also serve as a stress test for OPT++.

Acknowledgements
We would like to thank Joey Hellerstein for a number of useful discussions we had, and Mike Carey, Je�

Naughton, Yannis Ioannidis, Jignesh Patel and Manuvir Das for suggesting improvements to drafts of

this paper.

References

[BMG93] Jos�e A. Blakeley, William J. McKenna, and Goetz Graefe. \Experiences Building the Open OODB

Query Optimizer". In Proceedings of the 1993 ACM-SIGMOD Conference, Washington, DC, May

1993.

[FG91] B�eatrice Finance and Georges Gardarin. \A Rule Based Query Rewriter in an Extensible DBMS".

In Proceedings of the 7th International Conference on Data Engineering. IEEE, 1991.

[Fre87] Johann Christoph Freytag. \A Rule-Based View of Query Optimization". In Proceedings of the 1987

ACM-SIGMOD Conference, San Francisco, Californai, May 1987.

25

[GD87] G. Graefe and D. J. DeWitt. \The EXODUS Optimizer Generator". In Proceedings of the 1987

ACM-SIGMOD Conference, San Francisco, California, May 1987.

[GM93] G. Graefe and W. J. McKenna. \The Volcano Optimizer Generator: Extensibility and E�cient

Search". In Proc. IEEE Conf. on Data Eng., Vienna, Austria, 1993.

[Gra87] Goetz Graefe. \Rule-Based Query Optimization in Extensible Database Systems". PhD thesis, Uni-

versity of Wisconsin{Madison, November 1987.

[Hel94] Joseph M. Hellerstein. \Practical Predicate Placement". In Proceedings of the 1994 ACM-SIGMOD

Conference, Minneapolis, Minnesota, May 1994.

[HP88] Waqar Hasan and Hamid Pirahesh. \Query Rewrite Optimization in Starburst". Research Report

RJ 6367 (62349), IBM, 1988.

[IK90] Yannis E. Ioannidis and Younkyung Cha Kang. \Randomized Algorithms for Optimizing Large Join

Queries". In Proceedings of the 1990 ACM-SIGMOD Conference, June 1990.

[IW87] Yannis E. Ioannidis and Eugene Wong. \Query Optimization by Simulated Annealing". In Proceedings

of the 1987 ACM-SIGMOD Conference, San Francisco, California, June 1987.

[Kan91] Younkyung Cha Kang. \Randomized Algorithms for Query Optimization". Technical Report TR{

1053, Computer Sciences Department, University of Wisconsin{Madison, 1991.

[KGM91] Tom Keller, Goetz Graefe, and David Maier. \E�cient Assembly of Complex Objects". In Proceedings

of the 1991 ACM-SIGMOD Conference, Denver, Colorado, May 1991.

[KMP93] Alfons Kemper, Guido Moerkotte, and Klaus Peithner. \A Blackboard Architecture for Query Opti-

mization in Object Bases". In Proc. of the 19th VLDB Conf., 1993.

[LFL88] Mavis K. Lee, Johann Christoph Freytag, and Guy M. Lohman. \Implementing an Interpreter for

Functional Rules in a Query Optimizer". In Proc. of the 14th VLDB Conf., Los Angeles, California,

1988.

[LV91] Rosana S. G. Lanzelotte and Patrick Valduriez. \Extending the Search Strategy in a Query Opti-

mizer". In Proc. of the 17th VLDB Conf., Barcelona, September 1991.

[MDZ93] Gail Mitchell, Umeshwar Dayal, and Stanley B. Zdonik. \Control of an Extensible Query Optimizer:

A Planning Based Approach". In Proc. of the 19th VLDB Conf., Dublin, Ireland, 1993.

[OL90] K. Ono and G.M. Lohmann. \Extensible Enumeration of Feasible Joins for Relational Query Opti-

mization". In Proc. of the 16th VLDB Conf., August 1990.

[Pea84] Judea Pearl. \Heuristics". Addison-Wesley Publishing Company, 1984.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. \Extensible/Rule Based Query Rewrite

Optimization in Starburst". In Proceedings of the 1992 ACM-SIGMOD Conference, June 1992.

[Raa95] Francois Raab. \TPC Benchmark D { Standard Speci�cation, Revision 1.0". Transaction Processing

Performance Council, May 1995.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. \Access Path Selection in a

Relational Database Management System". In Proc. SIGMOD, May 1979.

[SC90] Eugene J. Shekita and Michael J. Carey. \A Performance Evaluation of Pointer-Based Joins". In

Proceedings of the 1990 ACM-SIGMOD Conference, Atlantic City, New Jersey, May 1990.

[SG88] Arun Swami and Anoop Gupta. \Optimization of Large Join Queries". In Proceedings of the 1988

ACM-SIGMOD Conference, 1988.

[SJ90] Edward Sciore and John Seig Jr. \A Modular Query Optimizer Generator". In Proc. IEEE Conf. on

Data Engineering, Los Angeles, California, February 1990.

[Swa89] Arun Swami. \Optimization of Large Join Queries: Combining Heuristics and Combinatorial Tech-

niques". In Proceedings of the 1989 ACM-SIGMOD Conference, Portland, Oregon, June 1989.

26

