
CS 787: Advanced Algorithms

DC-Based Approximations on Graphs

Instructor: Dieter van Melkebeek

We now return to the one basic design paradigm we skipped in our discussion of approximation
algorithms for NP-hard optimization problems, namely divide-and-conquer (DC), and apply it to
problems on graphs. The basic idea is as follows: Find a balanced cut of small capacity, i.e., a cut
in which both sides contain roughly the same number of vertices and such that few edges cross the
cut. Ignore the cut edges, recursively solve the problem on the subgraphs induced by each side of
the cut, and then use those solutions to construct a solution to the original instance. The latter
will only be approximate because we ignored the edges that cross the cut.

Finding a balanced but of minimum capacity is itself an NP-hard optimization problem. We
build our way towards constructing balanced cuts of small capacity by developing approxima-
tion algorithms for two problems related to multi-commodity flow: minimum multi-cut and spars-
est cut. Those approximation algorithms will be based on LP relaxations and on efficient low-
distortion embeddings of graph metrics into metrics on real spaces, namely L1. We obtain a
pseudo-approximation algorithm for balanced cut, and use it to develop an approximation algo-
rithm for the minimum cut linear arrangement problem on graphs.

1 Multi-Commodity Flow

Multi-commodity flow is the generalization of the classical flow problem for a single commodity to
multiple commodities that can simultaneously flow through the same pipe system (e.g., different
oil products). Here is the problem formalization.
Given: Graph G = (V,E) with non-negative edge weights. k pairs of vertices (si, ti), 1 ≤ i ≤ k
and non-negative demands, di, 1 ≤ i ≤ k.
Goal: Find a flow for each commodity , i.e., observing

• conservation for each i individually.

• capacity constraints for the total flow.

such that either:

(1) Total flow is maximized. This is called the Max Multi Commodity problem. The di’s are
ignored for this case.

(2) Maximize λ such that for every commodity i the flow is ≥ λ · di. This is called the Max
Concurrent Flow problem.

Both those problems can be cast as linear programs and be solved in polynomial time. We are
interested in two problems that are closely related to the duals of the above problems. The input
to those problems is the same as above.

(3) Minimum Multicut: Find a subset of edges F ⊆ E (called a multicut) of minimum total
weight such that after removal of those edges no pair (si, ti) is connected. All the flow from
the si’s to the ti’s will have to pass through the edges in the multicut so the flow is upper
bounded by the capacity of the multicut. Therefore, weak duality applies to give (1) ≤ (3).

1



(4) Sparsest Cut: Find S ⊆ V such that the marginal cost of the cut (S, S) is minimized. The
marginal cost is expressed by the sparsity σ(S) of the cut and formally defined as

σ(S) =

∑
e∈δ(S)we∑
i∈I(S) di

,

where δ(S)
.
= E ∩ (S × S) denotes the edges that cross the cut, and

I(S)
.
= {i | si and ti are on different sides ofS}.

Weak duality applies here to give (2) ≤ (4).

Proof. Suppose that in (2), some λ is obtained. Then, for any S ⊆ V∑
i∈I(S)

λdi ≤
∑
i∈I(S)

Flow for i that crosses δ(S)

≤
∑
e∈δ(S)

we

λ ≤
∑

e∈δ(S)we∑
i∈I(S) di

= σ(S)

Therefore, λ ≤ minσ(S)

Strong duality, however, does not hold, i.e., it is not true that the optimum value of (1) =
optimum value of (3), or optimum value of (2) = optimum value of (4). This would imply P = NP
because (1) and (2) are representable in a LP and can be solved efficiently whereas (3) and (4) are
NP-Hard problems. However, the existence of the O(log k) approximation algorithms we’ll develop
for both implies that (3) ≤ O(log k)(1) and that (4) ≤ O(log k)(2).

2 Minimum Multi-Cut Problem

We first develop a factor 4 ln(k+1) approximation algorithm for the Minimum Multi-Cut problem.
The algorithm will not be used as such for the construction of balanced cuts of small cost, However,
it is interesting in its own right and paves the way towards the approximation algorithm for Sparsest
Cut, which will be a core ingredient in our construction of balanced cuts of small cost.

Recall that we are given a graph G = (V,E) with non-negative weights on edges w : E 7→ [0,∞)
and a set of k pairs of vertices, say (si, ti) for 1 ≤ i ≤ k. We want to find a subset F ⊆ E such that
none of the (si, ti) pairs is connected in (V,E − F ), and w(F ) is minimized.

We start by formulating the problem as an Integer Linear Program.

2.1 Integer linear program and its relaxation

min
∑
e∈F

wexe s.t.

{
(∀i)(∀path P between (si, ti))

∑
e∈P xe ≥ 1

(∀e ∈ E) xe ∈ {0, 1}
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The linear programming relaxation will be obtained by replacing the integral constraints, xe ∈
{0, 1}, on the variables by 0 ≤ xe ≤ 1.

Observe that the above linear program can have exponentially many constraints, as there may be
exponentially many paths between two vertices. Given a candidate solution for the linear program
a separation oracle could check if it is a feasible solution. If not, it would give a constraint which
was violated by the solution. A closer look at the linear program should convince you that if we
let the edges have the weights xe, then the constraints are equivalent to saying that the length of a
shortest path between any pair, (si, ti), of vertices to be disconnected should be greater than one.
Checking this is easy. Just find shortest paths between every pair and then check if each of the
pairs have distance at least one. At the same time if a solution is infeasible then we will have a
pair (si, ti) and a path connecting si and ti of length less than one. Our separation oracle would
return the constraint for this path. We also know that the interior point algorithm finds an optimal
solution to a linear program, in polynomial time, provided that we have a separation oracle for this
problem. As such, we can, in polynomial time, solve the LP relaxation of the above integer linear
program.

3 Intuition behind the approximation algorithm

In this section we give the intuition behind the approximation algorithm. The details will be worked
out later.

We first start from any feasible solution, x, of the LP relaxation. Once again we will appeal
to the observation we made while designing the separation oracle. We will begin by defining a
metric on the set of vertices. The distance function d(·, ·) is simply the shortest path metric, i.e.,
the distance d(u, v) is equal to the length of a shortest path between the vertices u and v (if the
“length” of an edge is xe). The following interpretation to a feasible solution is crucial in the design
of the algorithm we will discuss.

We can visualize every feasible solution to the LP relaxation of the problem as a network of
pipes, the edges being the pipes and the vertices being the junctions where these pipes connect.
Now suppose, we make the pipes have their cross-sectional area equal to the weight of the edge
(we) they represent and their length equal to the value of x∗e, then the total volume of the system
is equal to the cost of the solution.

Note that the way we defined the metric ensures that any ball of radius less than half will never
contain both si and ti for any (si, ti) pair which was to be disconnected in the original graph. This
is because the diameter would be less than 1, and so the furthest distance between any two points
inside the ball would have to be less than 1 as well, while any feasible solution has the length of a
shortest path between any (si, ti) pair greater than or equal to 1.

This gives us a very simple algorithm for finding a solution to the problem. The algorithm would
iteratively pick a ball of radius at most half around an si which still needs to be disconnected from
the corresponding ti. It will then add all the edges that are cut by this ball to the solution set F .
It would also remove everything, edges and vertices, that is inside the ball or is cut by it from the
graph. Since this will never have both sj and tj for any j, the set F in the end will disconnect all
such pairs. Note that in one iteration we could possibly disconnect more than one pair.

The next step would be to relate the volume of the ball to the cost of the cut represented by this
ball. This way we will be able to relate the volume of the balls considered in a particular iteration
to the weight of the edges added in F in that iteration. Since we get rid of the whole volume in the
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cut as well as the edges cut by it, the cumulative volume of the balls at each stage can not exceed
the total volume of the system. Hence we have a relation between the cumulative weight of the
edges in F and the total volume of the system. We have already said that the fashion in which we
designed the network, will ensure that the total volume of the system will be exactly the cost of
the feasible solution from which we started. Henceforth, we will have a relation between cost of the
edges in the set F , found by the iterative procedure described above, and the solution from which
we start. Needless to say, we will start with an optimal solution of the LP-relaxation. Therefore
we will have a relation between the weight of the set F and the cost of the optimal solution of
the LP-relaxation. This relation will turn out to be a linear dependence with a factor of at most
4 ln(k + 1).

The only thing that remains is to relate the volume of a ball to the cumulative cost of the edges
cut by it. Before that, let us introduce some notation.

Fix si. Let B(r) denote a ball of radius r centered at si. Let Int(B(r)) be the set of edges
completely inside B(r), i.e., both the end points of the edge are at a distance at most r from si.
Let C(r) denote the set of edges cut by the ball. By cutting we mean that exactly one end point
of the edge is inside B(r). Unless stated otherwise, when we say e = (u, v) is cut by B(r), we will
mean that the vertex u is inside B(r) and v is outside it. Here we emphasize that the distance
between two vertices is the length of a shortest path between them. It should not be confused with
the euclidean distance between the vertices in the hypothetical pipeline network topology. The
volume, V (r), of a ball, B(r), is then the total volume of edges inside the ball, and partial volumes
of edges cut by the ball, based on the distance of the cut into the edge.

V (r) =
∑

e∈Int(B(r))

wexe +
∑

e=(u,v)∈C(r)

we(r − d(si, u))

Observe that the volume function is differentiable with respect to r except for finitely many
values of r where the function is discontinuous. We note that the discontinuities can occur only
at the vertices, and we do not need continuity at these points for our purposes. Apart from these

4



discontinuities the rate of change of the volume is just the sum of the weights of the edges cut by
it:

dV (r)

dr
=
∑
e∈C(r)

we

Since the edges have positive weights, V (r) is a non-decreasing function. This holds even at
the discontinuities because for e = (u, v) ∈ E and r = d(si, v), the triangle inequality implies that
r − d(si, u) ≤ xe.

In order to guarantee the existence of a good radius less than 1/2, we need to increase to base
level of the volume by adding a point volume at the origin of the ball. That is, we consider

Ṽ (r) = V (r) + αOPTLP

for some α ≥ 0, where OPTLP denotes the optimal value of the cost function obtained by solving
the linear program (which is the same as the total volume of the system).

We want to choose a radius r∗ < 1
2 for each ball such that for some choice of α and ρ the

following holds:
dṼ

dr
(r∗) ≤ ρṼ (r∗)

In other words, the cost of the edges cut by the ball is less than a factor ρ times the volume
of the system inside the ball (plus some factor of OPTLP ). Once we have this, we can argue
that the iterative procedure we suggested above will give us a solution which has cost at most
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ρ(kα + 1)OPTLP . To see this note that if we choose the ball of good radius r∗ at each stage, we
will have that

w(F ) ≤ ρ
k∑
i=1

Ṽi(r
∗
i )

≤ ρ(Total volume) + ρkαOPTLP

= ρ((1 + kα)OPTLP )

We now derive values for α and ρ such that we can indeed guarantee r∗ < 1
2 .

3.1 Approximation algorithm and analysis

Here is the aproximation algorithm more formally.

1. Input: Graph G(V,E) with edge weights we. Pairs of vertices (s1, t1), . . . , (sk, tk).

2. Solve LP-relaxation and get a feasible solution.

3. F ← ∅, H ← G.

4. while there exists an i such that si is connected to ti in (V,E − F )

5. Pick such i.

6. Pick r < 1
2 such that weight(C(r)) =

∑
e∈C(r)we ≤ ρṼH(r).

7. Add edges in CH(r) to F .

8. Remove from H, all edges in Int(BH(r)) and CH(r).

9. end while

10. Output: F .

The following lemmas are immediate.

Lemma 1. The algorithm terminates.

Proof. We separate at least one pair of vertices per iteration of the while loop, and there are a
finite number of these pairs, so the loop terminates.

Lemma 2. The algorithm returns a multicut.

Proof. The only difficulty in seeing this is that in some iteration, when we separated si and ti, we
ended up with both sj and tj in S for some j. Then the algorithm would remove S from the graph
and sj and tj might not be separated in the solution returned by the algorithm.

Suppose this happens. Then by construction of the algorithm, it follows that d(si, sj) ≤ r and
d(si, tj) ≤ r. This means that there is a path from sj through si to tj of length at most 2r. Since
r < 1/2, this path is of length less than 1 which can’t happen since we start with a feasible solution
to the LP-relaxation.
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Assume for the time being, that ρ = 2 ln
(
α+1
α

)
. We will prove later that this works, i.e., for

this value of ρ, we can find an r < 1/2 such that weight(C(r)) ≤ ρṼ (r). Also at this point, we
choose that α, which had previously been unspecified, should be set to α = 1/k.

Theorem 1. The algorithm gives a factor 4 ln(k + 1) approximation.

Proof. We start with the inequality we established earlier:

w(F ) ≤ ρ((1 + kα) +OPTLP )

= 2ρOPTLP

= 4 ln(k + 1)OPTLP

≤ 4 ln(k + 1)OPT

The following lemma completes the proof.

Lemma 3. For ρ = 2 ln
(
α+1
α

)
, there is an r < 1/2 such that weight(C(r)) ≤ ρṼ (r).

Proof. Suppose no such r exists. Then, except for finitely many points, we have

1

Ṽ

dṼ

dr
> ρ (1)

Integrating (1) between points of discontinuity (r, r′), we have

∫ r′−

r+

1

Ṽ

dṼ

dr
> ρ(r′ − r) (2)

i.e. ln

(
Ṽ (r′−)

Ṽ (r+)

)
> ρ(r′ − r) (3)

Here Ṽ (r′−) stands for the limit of Ṽ (·) at r′ from below and Ṽ (r+) stands for the limit of Ṽ (·)
at r from above. As Ṽ (·) is a non-decreasing function, we can replace the limits in the inequality
above by the values at r and r′.

ln

(
Ṽ (r′)

Ṽ (r)

)
> ρ(r′ − r)

Summing this over all intervals from 0 through 1/2, we get

ln

(
Ṽ (1/2)

Ṽ (0)

)
>

1

2
ρ

So,

Ṽ (1/2) > Ṽ (0)eρ/2 (4)

= αOPTLP · eρ/2 (5)
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Since Ṽ (1/2) is only a part of the total volume (plus αOPTLP ), this implies that:

(α+ 1)OPTLP ≥ Ṽ (1/2)

> αOPTLP · eρ/2

and thus,

ρ < 2 ln

(
α+ 1

α

)
which is a contradiction. Thus, there must be some r < 1/2 that suits our needs at each

iteration.

4 Sparsest Cut

We now use some of the ideas underlying the approximation algorithm for Minimum Multi-Cut to
develop an O(log k) approximation algorithm for Sparsest Cut.

We first point out that is suffices to find a multi-cut of small sparsity, i.e., a subset F ⊆ E.
Such a subset may induce multiple partitions (cuts). Let F induce the partition ρ of V , where
ρ = {S1, S2, . . . , Sm}. We define

σ(ρ) =

∑
e∈F we∑
i∈I(ρ) di

,

where I(ρ) = {i | si and ti belong to different partitions in ρ}.

Claim 1.
min

1≤i≤m
σ(Si) ≤ σ(ρ)

Proof. This follow from a well known inequality which states that if ai ≥ 0 and bi ≥ 0 then,

min
i

(
ai
bi

)
≤
∑

i ai∑
i bi

The proof of this inequality is left as an exercise.

As we can efficiently find the partition ρ from F , compute the sparsities σ(Si), and find the
minimum, the Claim shows that if suffices to find a multi-cut F with low sparsity.

4.1 Integer program and LP relaxation

We’ll now formulate an Integer Program for finding such a subset F . This is very similar to the
Minimum Cut formulation. There is a variable for every edge and a variable for every commodity.

min

∑
ewexe∑
i diyi

yi ≤
∑
e∈P

xe (∀i)(∀ path P (si, ti))

xe ∈ {0, 1} (∀e ∈ E)

yi ∈ {0, 1} (∀i ∈ [k])
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Here xe is an indicator that edge e ∈ F , and yi indicates whether i ∈ I(F ). The above formulation
models the problem exactly, but is not linear due to the objective being a ratio of linear functions
rather than merely a linear function. We can relax the integrality constraints and make the objective
linear by introducing another constraints which forces the denominator to be 1. The LP relaxation
is given below:

min
∑
e

wexe

yi ≤
∑
e∈P

xe (∀i)(∀ path P (si, ti))∑
i

diyi = 1

xe, yi ≥ 0

A couple notes are in order.

• The xe’s can be viewed as lengths connecting the two vertices. This interpretation is similar
to that given for the LP of the Minimum Multicut problem. In the optimal solution, yi’s for
di > 0 are the shortest path distance between si and ti where xe’s are the edge lengths.

• In spite of an exponential number of constraints, the above Linear program can be solved
efficiently because of the existence of an efficient separation oracle (as in the min multicut
problem). We can check if a constraint is violated by finding the shortest path with xe’s as
edge lengths for every (si, ti) and then check if it is ≥ yi.

4.2 Approximation algorithm and analysis

Like in the approximation algorithm for Minimum Multi-Cut, we use the optimal solution x∗e of the
LP relaxation, and consider the shortest-path metric d that is induces when the xe’s are interpreted
as edge lengths. The above observations imply that

σ(d)
.
=

∑
e=(u,v)∈E wed(u, v)∑

i did(si, ti)

satisfies
σ(d) ≤ OPTLP ≤ OPT. (6)

A particularly interesting type of metric in this context is a cut metric µS for some S ⊆ V ,
where the distance is 0 for two points on the same side of the cut (S, S), and 1 otherwise. If the
metric d happens to be a cut metric d = µS , then we are home free. This is because then σ(d)
equals the sparsity of S, so (6) we have found a cut S of minimum sparseness. This corresponds
to the case where the optimum of the LP relaxation happens to be integral, and cannot happen in
general unless P = NP.

A more general case that we can handle similarly are metrics d in the cone spanned by the cut
metrics, i.e., nonnegative linear combinations of cut metrics:

d =
∑
S

λSµS , (7)
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where λS ≥ 0. This is because for such a metric we can write

σ(d) =

∑
ewed(e)∑

i did(si, ti)

=

∑
ewe

∑
S λSµS(e)∑

i di
∑

S λSµS(si, ti)

=

∑
S λs

∑
eweµs(e)∑

S λs
∑

i diµs(si, ti)

Because the numerator is just a sum of the numerators of each of σ(S), and the denominator is a
sum of denominators of the same, the ratio is in fact a mediant of all the σ(S). By the property
we used before, we have that

min
λS>0

σ(S) ≤ σ(d). (8)

Thus, if we can efficiently decompose d as in (7) then we’re again home free and can efficiently find
a cut of minimum sparsity. Again, unless P = NP, this cannot be the general case, but the following
characterization of this case is critical: the cone of cut metrics consists exactly of those metrics that
embed isometrically into real space with the L1-metric. Recall that a metric isometrically embeds
into another metric if there exists a mapping from the first to the second that preserves distances,
and that

Lp : (x, y) 7→ ‖ x− y ‖p =

(∑
i

|xi − yi|
1
p

)
defines a metric on R` for every real p ≥ 1 and every positive integer `.

Lemma 4 (Decomposability Lemma). A metric d′ : V × V → [0,∞) isometrically embeds in
(R`, L1) for some ` iff d′ =

∑
λSµS with λS > 0. Moreover, given d′ we can compute a decompo-

sition of cut metrics with less than |V | · ` terms in polynomial time.

Proof. ⇐= Each µS is isometrically embeddable in (R1, l1) - simply assign every element on one
side of the cut to 0 and every element on the other side of the cut to 1. λsµS is just a scaling and
doesn’t change anything to the embeddability of the metric. Now summing over all possible cuts
we get that

∑
S λSµS as the embedded metric.

=⇒

Figure 1: Illustration of the cut metric induced by a set S of vertices

Say f is an isometric embedding of V → Rl. Consider the j’th component of the embedding and
call it fj . We order the elements of V as x1, x2, . . . , xn such that fj(xm) ≤ fj(xm+1) for 1 ≤ m < n.
Define Sm = {x1, x2, . . . , xm} and consider a particular x ≤ y. µSm(x, y) = 1 iff x ∈ Sm and
y /∈ Sm. In the figure this corresponds to x being in the left set and y in the right set. Therefore

|fj(x)− fj(y)| =
n−1∑
m=1

(fj(xm+1)− fj(xm))µSm(x, y).
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This equation may need some explanation. This works, because the total distance between x and
y is the sum of the distances between all the consecutive xr’s in the interval [x, y]. The distance
between any two consecutive xr and xr+1 in [x, y] is counted exactly once, namely when m = r.
The distances between consecutive xr’s outside the interval [x, y] are not counted, because they are
multiplied by µSm(x, y), which is 0 for m such that xm /∈ [x, y].

Note that the above is clearly a sum of cut metrics with λS = fj(xm+1)−fj(xm) ≥ 0. Summing
over all possible dimension j we get

||f(x)− f(y)||1 =
l∑

j=1

|fj(x)− fj(y)|

=
l∑

j=1

(
n−1∑
m=1

(fj(xm+1)− fj(xm))µSm(x, y)

)

Note that ||f(x)− f(y)||1 = d′(x, y). So this argument also shows that the number of components
is upper bounded by the number of dimensions ` times the number of points |V |. Finding the
decomposition can be done in polynomial time.

Now, in order to obtain our approximation algorithm for the general case, we make use of the
fact that any metric d can be efficiently embedded into real space under the L1-metric with small
distortion. More specifically, the following result is key.

Theorem 2 (Small Distortion Embeddings into L1). There exists a randomized polynomial time
algorithm that takes (V, d) as input and produces an embedding f : V → R` such that with probability
at least 1/2:

1. (∀e = (u, v) ∈ E)d′(u, v) ≤ O(log k) · d(u, v),

2. (∀i)d′(si, ti) ≥ d(si, ti),

where d′(x, y)
.
= ||f(x)− f(y)||1 =

∑`
j=1 |fj(x)− fj(y)|.

We will prove Theorem 2 in the next section.
Note that σ(d′) ≤ O(log k)σ(d). Since d′ isometrically embeds into L1, we can apply Lemma 4

and finds a cut S with sparsity σ(S) ≤ σ(d′) ≤ O(log k)σ(d) ≤ O(log k)OPT . Putting everything
together, this gives us an O(log k) approximation algorithm for Sparsest Cut

Theorem 3. There exists a randomized approximation algorithms for Sparsest Cut with approxi-
mation factor O(log k).

Proof. Here is the algorithm:

1. We solve the LP relaxation and get optimal solutions x∗e, y
∗
i . We consider the shortest path

metric d induced by the x∗e’s.

2. Approximate d by d′ by isometrically embedding it in (R`, L1).

3. Decompose d′ as d′ =
∑
λSµS with λS > 0 and output the S that minimizes σ(S).

The analysis follows from the discussion above.
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5 Small distortion embeddings into L1

We prove the following slightly stronger version of Theorem 2.

Theorem 4 (Key Theorem). There exists a randomized polynomial time algorithm that takes (V, d)
as input and produces an embedding f : V → R` with ` = O(log2(k)) such that

1. (∀e = (u, v) ∈ E)d′(u, v) ≤ ` · d(u, v),

2. Pr[(∀i)d′(si, ti) ≥ c log(k)d(si, ti)] ≥ 1
2 ,

for some constant c where d′(x, y) = ||f(x)− f(y)||1 =
∑`

j=1 |fj(x)− fj(y)|.

We leave it as an exercise to show that Theorem 2 follows.
Note that the theorem tries to prove some sort of datacompression. The original metric assigns

a number for every pair of points or O(n2) numbers, where n = |V |. In our embedding, we will
aggregate distance information and set fj(x) = d(x, Sj) for some Sj ⊆ V , or, the metric assigns a
distance between a point and a subset. We choose the new metric to be d(x, Sj) = minu∈Sjd(x, u).

5.1 Proof of statement (1)

FACT 1. ∀x, y ∈ V : |d(x, Sj)− d(y, Sj)| ≤ d(x, y).

Suppose u is the closest element in Sj to x and v is the closest element in Sj to y, then
d(x, Sj) = d(x, u) ≤ d(x, v). By the triangle inequality we know that d(x, v) ≤ d(x, y) + d(y, Sj),
therefore d(x, Sj)− d(y, Sj) ≤ d(x, y). Together with the same derivation started from y this gives
us the above statement.

We are now ready to prove statement (1) from the key theorem. We know that if each fj is of

the form fj(x) = d(x, Sj) for some Sj ⊆ V then d′(x, y) = ||f(x)− f(y)||1 =
∑l

j=1 |fj(x)− fj(y)| ≤
l · d(x, y).
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5.2 Proof of statement (2)

In this section we will show how to pick the Sj appropriately. Note first that the Sj only depend
on the sources and the sinks. Therefore we will only consider those in the next part: we thus define
V ′ = {si} ∪ {ti}. Note that |V ′| ≤ 2k.

FACT 2. Let us fix commodity i.

We will define two balls centered at si and ti, with parameres r,∆ specified later and choose
the sets Sj such that the following holds:

B(si, r + ∆) ∩ Sj = ∅ (∗)
B(ti, r) ∩ Sj 6= ∅.

Then we know that fj(si)− fj(ti) ≥ ∆. We now introduce randomness in order for the sets Sj to
be independent from the (si, ti) pair chosen.

Suppose both balls (B(si, r + ∆) and B(ti, r)) contain about p points in V ′. If we put each
v ∈ V ′ in Sj with probability about 1

p , independently, then each of the balls satisfies

Pr[B ∩ Sj = ∅] ∈ (ε, 1− ε)

for some constant ε > 0. If both balls are disjoint then

Pr[(∗)] ≥ ε2

and if (∗) holds then fj(si)− fj(ti) ≥ ∆. Thus,

E [|fj(si)− fj(ti)|] ≥ ε2 ·∆

5.2.1 Construction of Sj

We want to make sure that the number of elements of B ∩ V ′ in Sj is approximately 1, but we
can’t use an exact count (like p above) as the sets Sj would be dependent on (si, ti). Therefore we
choose independently, s.t.

(∀v ∈ V ′) Pr[v ∈ Sj ] =
1

2j+1
.
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5.2.2 Construction of the balls

Let
r
(x)
j = min{r : |B(x, r) ∩ V ′| ≥ 2j}

for 0 ≤ j ≤ blog |V ′|c. Remember we have fixed i. For this specific i, we define

rj = max(r
(si)
j , r

(ti)
j )

Assume for the moment that r
(si)
j ≥ r(ti)j ; the other case is symmetric. Consider ◦B(si, rj), the

open ball around si with radius rj , and B(ti, rj−1), the closed ball around ti with radius rj−1. Then

| ◦B(si, rj) ∩ V ′| ≤ 2j

|B(ti, rj−1) ∩ V ′| ≥ 2j−1

So the probability that the bigger of the two balls is empty is given by

Pr[◦B(si, rj) ∩ Sj = ∅] =

(
1− 1

2j+1

)(|◦B∩V ′|)

≥
(

1− 1

2j+1

)2j

≥ 1

2

and the probability that the smaller of the two balls is not empty is given by

Pr[B(ti, rj−1) ∩ Sj 6= ∅] = 1−
(

1− 1

2j+1

)(|B∩V ′|)

≥ 1−
(

1− 1

2j+1

)2j−1

≥ 1− e−
1
4

If rj ≤ d(si,ti)
2 , both events denoted by (∗) are independent, so if we then choose ε = min(e−

1
4 , 12),

then

Pr[(∗ ∗ ∗)] ≥ ε2

where (∗ ∗ ∗) represents

|fj(si)− fj(ti)| ≥ rj − rj−1 (∗ ∗ ∗)

In particular,

E [|fj(si)− fj(ti)|] ≥ ε2 · (rj − rj−1) (∗∗)

which is obtained by applying Markov’s inequality.
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Let t = max{j : rj ≤ d(si,ti)
2 }. Summing (∗∗) over all j = 1, 2, . . . , t gives

E

 t∑
j=1

|fj(si)− fj(ti)|

 ≥ ε2 · rt
because of the telescoping sum and the fact that r0 = 0. We also have

E [|ft+1(si)− ft+1(ti)|] ≥ ε2(rt+1 − rt)

if we redefine rt+1 = d(si,ti)
2 . This is because rt+1 would be larger than d(si,ti)

2 and by redefining it
as a smaller quantity the inequality is certainly true. Adding the last two equations we obtain

E

 t+1∑
j=1

|fj(si)− fj(ti)|

 ≥ ε2 · d(si, ti)

2

We now have the result (2) in expectation for each individual commodity. We apply a concen-
tration result to arrive at (2) for all commodities simultaneously. Say we run the process m times
independently, where m remains to be determined. Let d′q be the result of the q’th run. Then for
some fixed i and j

Pr[(∗ ∗ ∗) holds for ≥ ε2

2
m of the runs] ≥ 1− e−

ε2

8
m,

by applying Chernoff’s inequality:

Pr
[∑m

j=1Xj ≤ (1− η)µ
]
< e−

η2

2 m, where we let Xi be the indicator variable for (∗ ∗ ∗) on the

i’th run, and µ =
∑m

q=1E[Xq] for which we choose η = 1
2 . Note that µ ≥ ε2 ·m.

Let A = #i’s ∗ #j’s. Then A ≤ k(log k +O(1)). So if

e−
ε2

8
m ≤ 1

2A

then

Pr[(∀i, j)(∗ ∗ ∗) holds for ≥ ε2

2
m of the runs] ≥ 1

2

In that case consider d′ =
∑m

q=1 d
′
q.

d′(si, ti) =
m∑
q=1

d′q(si, ti)

≥ ε2

2
·m · d(si, ti)

2

By picking m = O(log k) we have that (2) holds and our algorithm produces an embedding in Rl
with l = O(log2(k)). The embedding thus looks like: f(x) = [d(x, S1), d(x, S2), . . . , d(x, SO(log2(k)))].
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5.3 Algorithm

To summarize, here is the resulting embedding algorithm:

Input: A metric space (V, d).

Output: An embedding to a new metric space f : (V, d)→ (RO(log2(k)), L1).
Embedding((V, d))
For i = 1 to O(log2(k))

For all a ∈ V
Put a in Si with probability 1

2i+1 .
For all x ∈ V

Set f(x) = [d(x, S1), d(x, S2), . . . , d(x, SO(log2(k)))].
return f

6 Balanced Cut

We now use our O(log k) approximation algorithm for Sparsest Cut to efficiently obtain balanced
cuts of small capacity.

Let us first formalize what we mean by a balanced cut and the Balanced Cut problem.

Definition 1 (Balanced Cut). Given a graph G = (V,E), a cut (S, S) is α-balanced iff |S| ∈
[α · n, (1 − α) · n], where n = |V |. That is, a cut is α-balanced if both S and S contain at least a
fraction α of the vertices.

Definition 2 (Balanced Cut Problem). Given a graph G = (V,E) with edge weights we ≥ 0 and
some α ≤ 1/2, the goal is to find an α-balanced cut (S, S) of minimum cost.

Cost(S) =
∑
e∈δ(S)

we

Additionally, let OPTα(G) = min
(
{Cost(S) | (S, S) is α-balanced}

)
.

We will use uniform sparsest cuts to solve the balanced cut problem. Recall the sparsest cut
problem is defined as follows: We are given a graph G = (V,E) with edge weights we ≥ 0, k
commodity pairs (si, ti) ∈ V × V , and a demand di for each pair. The goal is to find S ⊆ V that
minimizes

σ(S) =

∑
e∈δ(S)we∑
i∈I(S) di

,

where I(S) = {i | si and ti are on different sides of S}. The uniform sparsest cut problem has a
commodity between every pair of vertices (so k =

(
n
2

)
), and the demand for each pair, di = 1. Let

OPTSC(G) denote the cost σ(S) of an optimal solution S to the uniform sparsest cut problem.
The idea for the balanced cut approximation algorithm is similar to that of the greedy set cover

approximation algorithm, which at each step picks a set with minimal marginal cost. Here we will
at each step choose some set S̃ ∈ S, keeping the cost σH(S̃) low (H is the graph with vertices in S
remove). The actual algorithm is as follows.
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Algorithm 1: Balanced Cut Approximation Algorithm
(1) H ← G
(2) S ← ∅
(3) while |S| < αn

(4) S̃ ← subset of V (H) s.t. |S̃| ≤ |V (H)|
2 and σH(S̃) ≤ ρH ·OPTSC(H)

(5) S ← S ∪ S̃
(6) H ← H \ S̃
(7) Return S

We can use our sparsest cut approximation algorithm to select S̃ each iteration. That al-
gorithm returns a set of vertices S∗, but S∗ creates a cut with the same sparseness, so we can
choose whichever one leads to the size S̃ ≤ |V (H)|

2 as desired. Choosing S̃ in this manner, what
approximation factor ρH is achieved? Because the sparsest cut algorithm gives factor O(log k)
result, ρH = O(log(# pairs in H)) = O(log(|V (H)|2)) = O(log n) is the approximation factor of
the sparseness of the cut for each iteration. Since we will only care about this asymptotic notion,
we will just take ρ = O(log n) and use that everywhere instead of ρH as it is an upper bound.

Claim 2. The algorithm returns an α-balanced cut, provided α ≤ 1/3.

Proof. Since the while loop guarantees that |S| ≥ α · |V (G)| when the algorithm terminates, we
only need to argue that we do not overshoot. That is, we only need to check that the solution S
returned has size |S| ≤ (1− α)n.

Consider one iteration of the while loop. At its entry, we have |S| < αn, and we know |S̃| ≤
|V (H)|

2 = n−|S|
2 .

|S ∪ S̃| ≤ |S|+ n− |S|
2

=
n+ |S|

2

<
n+ αn

2

=
1 + α

2
n

With α ≤ 1/3, we have 1 + α < 2(1 − α), and making that substitution above, get |S ∪ S̃| <
(1− α)n, which was desired.

Claim 3. (∀α < β ≤ 1/2), Cost(S) ≤ 3(1−α)
β−α ρ ·OPTβ(G).

Proof. Let S∗ be an optimal β-balanced cut for G; that is, Cost(S∗) = OPTβ(G). Let Hi be H at
iteration i, Vi = V (Hi), S̃i is S̃ at iteration i, and S∗i = S∗ ∩ Vi.

Cost(S̃i) = σHi(S̃i) · |S̃i| · |Vi \ S̃i| (uses definition of σ, and uniform setting)

≤ ρ · σHi(S∗i ) · |S̃i| · |Vi \ S̃i|
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Now we will focus on the term

σHi(S
∗
i ) =

∑
e∈δ(S∗i )

we

|S∗i ||Vi \ S∗i |
First we know that the numerator is certainly ≤ OPTβ(G) =

∑
e∈δ(S∗)we, because S∗i ⊆ S∗ (note

also that Vi ⊆ V ). In other words, the edges that cross the cut S∗ in a subset of the graph definitely
cross the same cut in the full graph, and thus their cost is no more than the total cost of the cut.

Next, we want to get a lower bound on the denominator. Both |S∗| ≥ βn and |S∗| ≥ (1− β)n,
due to the fact that S∗ is a β-balanced cut in G. At iteration i, |Vi| = |S| < αn, so

|S∗i | = |S∗ ∩ Vi|
= |S∗ ∩ (V \ Vi)|
= |S∗ \ (S∗ ∩ Vi)|
= |S∗| − |S∗ ∩ Vi| (b/c second term is subset of first)

> βn− αn
= (β − α)n

... and ...

|Vi \ S∗i | = |Vi| − |S∗i | (again b/c second term subset of first)

≥ (1− α)n− (1− β)n

= (β − α)n

So both |S∗i | and |Vi \ S∗i | are bounded below by (β − α)n. Because |Vi| ≥ 2
3n, we also know

that one of those two sets is in fact ≥ 1
3n on any given iteration. Then we can craft this bound on

their product:

|S∗i ||Vi \ S∗i | ≥
1

3
(β − α)n2

Together with the bound on the numerator, we can now give the following bound:

σHi(S
∗
i ) ≤

3OPTβ(G)

(β − α)n2

Inserting this in our expression for Cost(S̃i) above, and using the fact that |Vi\ S̃i| ≤ n (because
|Vi| ≤ n):

Cost(S̃i) ≤ ρ ·
3OPTβ(G)

(β − α)n
· |S̃i|

Now we sum over the iterations to obtain the following:

Cost(S) ≤
∑
i

Cost(S̃i) (see following paragraph)

= ρ ·
3OPTβ(G)

(β − α)n
·
∑
i

|S̃i|

≤ ρ ·
3OPTβ(G)

(β − α)n
· (1− α)n (

⋃
S̃i = S and S̃i ∩ S̃j = ∅)

=
3(1− α)

β − α
ρ ·OPTβ(G)
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The inequality Cost(S) ≤
∑

iCost(S̃i) holds because each edge e = (u, v) which crosses cut S
had vertex u inserted into S on some specific iteration, i. On that iteration, the weight of edge e
was counted because u and v were in H but u was in S̃i while v was not. Over all iterations, all
edges cutting S were counted, so the cost is no greater than the sum of the iterative costs.

Note also that an edge (u, v) that crosses the cut S at some intermediate point in the algorithm
will not cross the final cut if v is later added to S. This means the first inequality may be a very
large overestimate of Cost(S). See Figure 2.

Figure 2: Edges crossing S at some step of algorithm. Note that edges in bold do not cross final
cut.

Theorem 5. For any α ≤ 1/3 and α < β ≤ 1/2, we can in polynomial time find an α-balanced
cut of cost at most O(log n) ·OPTβ. (α and β are treated as constants.)

Proof. Follows from Claim 1 and Claim 2.

Note that OPTβ could be much larger than OPTα, and therefore the algorithm is only a pseudo-
approximation algorithm.

7 Minimum Cut Linear Arrangement Problem

Finally, we give an example of an NP-hard optimization problem on graphs to which we can apply
our DP-approach based on our pseudo-approximation algorithm for Balanced Cut.

We first introduce the problem.

Definition 3 (Minimum Cut Linear Arrangement Problem). Given a graph G = (V,E) with edge
weights we ≥ 0, the goal is to find an ordering π : V → {1, 2, ..., n} such that

C(G) = max
1≤i≤n

w(E ∩ (Ii × Ii))

is minimized, where Ii = {v ∈ V | π(v) ≤ i}. See Figure 3 for an example.

The approximation algorithm for the minimum cut linear arrangement (MCLA) problem is as
follows. We first call the balanced cut approximation algorithm to partition V into a 1/3-balanced
cut (S, S). Then we recursively solve the two subproblems, G|S and G|S , induced by S and S.
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Figure 3: Left: An arrangement π for some graph G. Right: The edges of G under the arrangement
π. Note that C(G) for this arrangement is 3 (assume all edge-weights are 1), for i = 2.

Finally, the solution is derived by simply concatenating the solutions to the two subproblems. Note
that neither |S| nor |S̄| is greater than (1−α)n, and therefore each subproblem is at least a factor
(1 − α) smaller than the original problem. The level of recursion in this approach is therefore at
most log 1

1−α
n.

Theorem 6. The above algorithm is a factor O(log2 n) approximation algorithm for the minimum
cut linear arrangement problem.

Proof.

C(G) ≤ max(C(G|S), C(G|S)) + Cost(S)

= max(C(G|S), C(G|S)) +O(log n)OPTβ(G)

≤ max(C(G|S), C(G|S)) +O(log n)OPT1/2(G)

≤ max(C(G|S), C(G|S)) +O(log n)OPTMCLA(G)

To see whyOPTβ=1/2(G) ≤ OPTMCLA(G), consider an arrangement π which realizesOPTMCLA.
We then have a trivial 1/2-balanced cut by taking S = {v ∈ V | π(v) ≤ |V |/2}. The cost of this cut
cannot be more than OPTMCLA, because OPTMCLA is an upper bound on the cost of any i-cut in
this arrangement. OPTβ=1/2(G) can be no more than the cost of this cut, because this is itself a
1/2-balanced cut, whose value is possibly greater than, but not less than the optimal 1/2-balanced
cut.

Recall that the level of recursion is at most log 1
1−α

n, so that expanding the recurrence relation,

we get

C(G) ≤ O(log 1
1−α

n) ·O(log n) ·OPTMCLA

= O(log2 n)OPTMCLA

One final note is that the sparsest cut problem can be approximated with factor O(
√

log n)
by using semi-definite programming. Thus, the approximation factor of the minimum cut linear
arrangement problem can be reduced to O(log3/2 n).
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