
CS 787: Advanced Algorithms

Dynamic Programming

Instructor: Dieter van Melkebeek

We continue our review of some topics that are usually covered in an undergraduate algorithms
course. Today’s topic is dynamic programming.

1 Paradigm

Dynamic programming can be viewed as a refinement of divide-and-conquer. Just like in the latter,
there is an underlying recursion that reduces an instance to easier instances of the same problem,
but we make sure that:

(a) the number of distinct subproblems in the recursion tree remains small, and

(b) that each subproblem is solved no more than once.

To illustrate the second point, consider the straightforward recursive algorithm to compute the
nth Fibonacci number Fn, based on the recurrence

Fn = Fn−1 + Fn−2 (1)

with the base cases F1 = 1 and F2 = 1. The recursion tree is a binary tree of depth n, and is
complete up to level n/2. Thus, the number of nodes in the tree and the running time of the
algorithm are at least 2n/2. However, note that there are only n distinct subproblems, namely
computing Fi for i ∈ [n]. This means that many of the subproblems are solved over and over, and
a lot of work can be saved by ensuring (b).

There are two ways to ensure (b):

• Memoization. We create a table that contains an entry for every problem instance that can
occur as the input for one of the calls in the recursion tree. We initially mark each entry in
the table as unsolved. Each time we make a recursive call, we first check the table. If the
entry is marked as unsolved, we make the recursive call, and when it ends we mark the entry
as solved and store the result of the recursive call there. If the entry is marked as solved, we
do not make the recursive call but simply read the result from the table and return it right
away.

Memoization can be applied generically, but the table may require a lot of memory space.

• Solving instances bottom-up. The recursion implicitly induces a partial order on the problem
instances. This is because the inputs to the recursive calls are “easier” than the input itself.
We can build up the table of instances from easiest to harder up to the point where we reach
the input instance. Each time we use the recurrence to fill in the next entry in the table, the
results of the recursive calls are already present in the table.

This approach is less generic as one needs to figure out the underlying partial order, and
may result in solving subproblems that don’t occur in the recursion tree for the given input.
However, it sometimes allow to save on memory space because there is no need to keep the
entire table in memory.

1



In the case of computing the Fibonacci numbers based on the recurrence (1), the subproblems
are “computing Fi” for i ∈ [n], so the memoization table is of size n. In this case “easier” means
“smaller i”. When we compute the solutions to the subproblems in a bottom-up fashion, we only
need to keep track of the last two values computed, so we only need to keep 2 entries in memory.

In our Fibonacci example it is straightforward to keep the number of subproblems small. Typ-
ically, this step requires more ingenuity. Often the key insight consists of discerning/ensuring
some structure in the subproblems that occur in the recursion tree, and the crux of a dynamic
programming approach can often be captured by precisely specifying the subproblems.

2 Weighted Interval Scheduling

Given: n jobs specified by intervals and weights wi for i ∈ [n].

Goal: Schedule a subset S of these jobs on a single machine in a non-overlapping way such

that
∑

i∈S

wi is maximized.

Note that this problem generalizes the interval scheduling problem from the previous lecture,
which corresponds to w ≡ 1.

For the general weighted case, no greedy approach is known. As for divide-and-conquer, it
appears difficult to imagine a correct scheme that would reduce to instances of half the size by
splitting the set of jobs in half. In fact, our approach will reduce to instances that can be just one
job smaller.

Consider the first job under some ordering. In some optimal solution S this job will either be
scheduled, or not scheduled. If it is not scheduled, then S coincides with an optimal schedule S′

for the n − 1 remaining jobs. If the first job is scheduled, then S consists of the first job and an
optimal schedule S′′ for the jobs that do not overlap with the first job. We recursively compute S
and S′′, and see which of the two yields the better schedule S.

What structure do the subproblems that occur in the resulting recursion tree have? They are
all specified by a subset of the original n jobs. As there are 2n such subsets, this observation is not
good enough to achieve a polynomial running time. However, if we consider the jobs in the order
of earliest start-time first, then the subsets exhibit some additional structure: they are all suffixes
of this ordering, i.e., they consist of all jobs starting from some index i in the ordering. As there
are only n suffixes, we have realized (a) in the description of the paradigm.

Thus, we order the jobs earliest start-time first. We define OPT(i) for i ∈ [n] as the maximum
value of a valid schedule for jobs i through n. We are interested in OPT(1), and have the recurrence

OPT(i) = max(OPT(i+ 1), wi +OPT(next(i))), (2)

where next(i) denotes the index of the first job after i that does not overlap with i; if there is no
such job, we define next(i) to be n+1, and set OPT(n+1) to 0. We compute the one-dimensional
table OPT(i) from the back (i = n + 1) to the front (i = 1) using the recurrence (2), and return
OPT(1).

The correctness of the OPT table follows from the above analysis. As for the running time,
the initial sorting takes O(n logn) time. We leave it as an exercise to show how to compute the

2



next table in O(n logn) time. The rest of the algorithm takes time O(n). Hence, the total time to
compute the OPT table is O(n logn).

Once we have computed the array of OPT values, we can retrieve a schedule S that realizes
OPT(1) in a subsequent forward sweep over the array. We start at position i = 1. If the first
term on the right-hand side of (2) yields the maximum, we do not take up job i in S, and move
to position i + 1; otherwise, we take up job i in S, and move to position next(i). We do so until
we reach position n + 1. In order to facilitate this process, we can store in location i of our table
not only OPT(i) but also which of the two expressions on the right-hand side of (2) realizes the
maximum. This phase runs in time O(n), so the overall running time is O(n logn).

3 Sequence Alignment

Given: two sequences A[1..n] and B[1..m] over an alphabet Σ.

Goal: align A and B such that the sum of the number of skipped symbols and misaligned
symbols is as small as possible.

As an example, let A denote the string “occurrence” and B the string “ocurrance” over the
Roman alphabet. An optimal alignment would skip one of the first two “c”’s in A, and misalign
the first “e” in A with the “a” in B, for a total penalty of 2.

Sequence alignment arises in word processing (where n and m are relatively small and Σ is
relatively large), and in computation biology (where n and m are typically huge but Σ is small).
For example, in order to determine the evolutionary tree of species biologists examine how well the
DNA of two potential evolutionary relatives aligns.

The first decision we need to make is whether to (a) skip the first symbol in A, or (b) skip the
first symbol in B, or (c) align the first symbols of A and B. In all three cases, what is left is to
optimally align the remainders of A and B. All resulting subproblems are specified by the suffixes
of A and B that need to be aligned. This leads to the following specification of the subproblems:
For i ∈ [n] and j ∈ [m], let OPT(i, j) denote the minimum penalty for aligning A[i..n] and B[j..m].
We are interested in OPT(1,1), and have the recurrence

OPT(i, j) = min(1 + OPT(i+ 1, j), 1 + OPT(i, j + 1), δA[i],B[j] +OPT(i+ 1, j + 1)), (3)

where we set OPT(n + 1, j) = OPT(i,m + 1) = OPT(n + 1,m + 1) = 0, and δa,b denotes the
indicator of the condition a = b.

Our OPT table is now two-dimensional. In what order do we compute the entries? Note that
the right-hand side of (3) only uses the neighboring cells to the bottom, right, and bottom-right
of cell (i, j). Thus, we could organize the computation diagonal-wise (where the order within the
diagonal does not matter, or column-wise (where the order within a column is bottom-up), or row-
wise (where the order within a row if left-right). In either case the time to compute OPT(1,1) is
O(nm). The memory requirements differ: O(n +m) for the diagonal-wise ordering, O(n) for the
column-wise ordering, and O(m) for the row-wise ordering. This is because we only need to keep
track of the current and previous diagonal/column/row.

If we use the method from the previous section to retrieve an actual alignment that realizes
OPT(1,1), we need to store the entire table, in which case the memory requirement increases
to O(nm). For some applications in computational biology that amount may be too large. By

3



exploiting the fact that the OPT values can be computed using only O(n + m) space, one can
reduce the space complexity to (n +m) while keeping the running time at O(nm). We leave this
as an exercise (hint: divide-and-conquer).

Note that the process of finding an optimal alignment can be thought of as finding a shortest
path from position (1,1) to position (n + 1,m + 1) in the (n + 1) × (m + 1) grid graph where the
edges only go from left to right (length 1), top to bottom (length 1), or diagonally (length given
by the δ function).

4 Iterated Matrix Multiplication

Given: n integer matrices Mi for i ∈ [n], where Mi has dimension di−1 × di.

Goal: compute the iterated product M1M2 . . .Mn.

Using the straightforward algorithm for multiplying two matrices, there are two ways to organize
the computation for n = 3: As (M1M2)M3 or as M1(M2M3). The number of required integer
additions and multiplications can differ vastly. For example, for (d0, d1, d2, d3) = (10, 100, 10, 1000),
the first option only takes d0d1d2+d0d2d3 = 110, 000 multiplications, whereas the second one takes
d1d2d3 + d0d1d3 = 2, 000, 000 multiplications.

In general, our aim is to break up the computation of the iterated matrix product into a sequence
of pairwise matrix multiplications so as to minimize the number of integer multiplications involved.

At the top level, we write the iterated matrix product as

M1M2 . . .Mn = (M1M2 . . .Mk) · (Mk+1Mk+2 . . .Mn).

for some k ∈ [n − 1]. Thus, the first decision to make is the choice of k. Iterating these decisions
leads to subproblems specified by a subinterval [i, j] of the integers [n], specified by integers i and j
such that 1 ≤ i < j ≤ n. Correspondingly, we define OPT(i, j) as the minimum number of integer
multiplications needed to compute MiMi+1 . . .Mj . We are interested in OPT(1, n), and have the
recurrence:

OPT(i, j) = min
i≤k<j

(OPT(i, k) + OPT(k + 1, j) + di−1dkdj), (4)

where OPT(i, i) is set to 0 for i ∈ [n].
Our OPT table is again 2-dimensional, but only the top-right half of the table is used. This is

because the subproblems correspond to intervals. We evaluate (4) from smallest to largest interval
size. The table contains

(

n
2

)

= Θ(n2) entries. A single evaluation of (4) takes O(n) times, resulting
in a total running time of O(n3). Retrieving a computation schedule achieving OPT(1, n) can be
done in the standard way. Both evaluating OPT(1, n) and retrieving a schedule seem to require
keeping O(n2) entries in memory.

5 Shortest Paths

We revisit the shortest paths problem from lecture 2, but now allow the edge lengths to take on
negative values. The problem is well-defined iff there exists no cycle with negative total length that
is reachable from s and from which t can be reached.

4



No greedy algorithm is known in this general setting. We leave it as exercise to construct an
example in which the problem is well-defined but Dijkstra’s algorithm fails.

Instead, we use a dynamic programming approach known as Bellman-Ford, where the underlying
recurrence is based on the decision of the last edge e = (v, t) on the path from s to t. Given e,
what remains is to find a shortest path from s to v. This suggests that we use the end vertex v as
an index into our table. Moreover, the number of edges on the path becomes smaller under this
recurrence. Thus, for v ∈ V and non-negative integer k, we define OPT(k, v) as the length of a
shortest path from s to v using no more than k edges, or ∞ if no such path exists. For k ≥ 1 we
have the recurrence

OPT(k, v) = min(OPT(k − 1, v), min
(u,v)∈E

(OPT(k − 1, u) + ℓ(u, v))), (5)

with OPT(0, s) set to 0 and OPT(0, v) set to ∞ for v 6= s.
We compute the OPT table row-by-row. We start with the base case k = 0. In order to evaluate

(5) in a given row, we initialize the row OPT(k, ·) as a copy of the previous row OPT(k− 1, ·), and
then cycle over all edges e = (u, v) ∈ E and update OPT(k, v) as min(OPT(k, v),OPT(k − 1, u) +
ℓ(u, v)). The amount of work per row is O(n) for the initialization, and O(m) for the updates. If
the problem is well-defined, then there is a shortest path that does not repeat any vertex, which
implies that the number of edges on the path is no more than n− 1. Thus, it suffices to compute
the rows up to k = n − 1, and the overall running time is O((n + m)n). Compare this to the
O((n +m) log n) for Dijkstra’s algorithm in the case of non-negative edge lengths, and O(n +m)
for breadth-first search in case all the edge lengths are the same.

If two consecutive rows in the OPT table are identical, all subsequent rows will be identical,
and there is no need to increase k any further. If row k = n is not identical to row k − 1, then the
digraph contains a cycle of negative total weight that is reachable from s. This property can be
used to detect whether the problem is well-defined in time O(n+m)n).

When computing the OPT values in a row-by-row fashion, one only needs to keep track of
the previous row, so the memory requirement is O(n). Retrieving the path in the standard way
requires storing the entire table of size O(n2). The strategy mentioned at the end of our discussion
on sequence alignment reduces the space requirement to O(n) while slightly increasing the running
time to O(n + m)nlogn). In fact, one can do with a one-dimensional array OPT′(v) which is
initialized as OPT(0, v) and keep iterating over the edges e = (u, v) ∈ E and applying the following
update rule:

OPT′(v) = min(OPT′(v),OPT′(u) + ℓ(u, v)).

The resulting algorithm for retrieving a shortest path runs in time O(n+m)n) and space O(n). 1

1The meaning of the intermediate values of OPT’ during the execution of the algorithm is not as clean as for

OPT.

5


