
CS 787: Advanced Algorithms

Flows and Cuts

Instructor: Dieter van Melkebeek

This lecture covers the construction of optimal flows and cuts in networks, their relationship,
and some applications. It paves the way to our subsequent treatment of linear programming. The
network flow and cut algorithms do not follow any of the paradigms we discussed so far, not do
they represent a paradigm of their own. The applications we will present illustrate the paradigm
of efficient reductions.

1 Concepts

We define the notions of network, flow, and cut.

Definition 1 (Network). A network consists of a directed graph, G = (V,E), a capacity function,
c : E 7→ [0,∞), and two distinguished vertices: a source s and a sink t. The source vertex has only
outgoing edges and the sink has only incoming edges.

Example: The following figure shows a sample network. The capacities are shown next to each
edge and the source and sink vertices are labeled as s and t.

s t

20

30

10

2010

⊠

The edges in a network can be thought of as pipes that can carry “traffic” of some kind: water,
oil, electricity, cars, bits, etc. The capacity of an edge indicates the maximum amount of traffic
that the edge can carry per unit of time. The vertices represent connections between pipes. The
source is the only place where traffic can enter the system, and the sink where it leaves the system.
Everywhere else traffic is conserved. The setting is captured by the following definition of “flow,”
which is the technical term for “traffic.”

Definition 2 (Flow). Given a network G = (V,E), a flow is a function f : E 7→ [0,∞) such that:

1. (∀e ∈ E) f(e) ≤ c(e)

2. (∀v ∈ V \ {s, t}) ∑(u,v)∈E f(u, v) =
∑

(v,u)∈E f(v, u)

1

A flow function f maps each edge to the amount of traffic it carries. Requirement 1 in the
preceding definition represents the capacity constraints of teh network: no edge can carry more
flow that its capacity. Requirement 2 expresses the conservation constraints: all vertices except
the source and sink must have equal inflow and outflow. The source is allowed to have net outflow,
and the sink may have net inflow.

A flow specifies some way of traffic being routed from the source vertex to the sink vertex
observing the capacity of the network. The value, ν, of a flow quantifies the amount of traffic
being routed from source to sink. One way to formalize this is as the total amount flowing on the
outgoing edges of the source:

ν(f) =
∑

(s,u)∈E

f(s, u).

The definition of ν seems rather arbitrary. We could as well have defined it as the total amount of
flow into the sink. Both definitions are actually equivalent. In fact, for every cut in the network
that separates the source s from the sink t, the net amount of flow that crosses the cut from the
source to the sink equals ν.

We formalize the notion of cut as follows.

Definition 3 (st-Cut). An st-cut in a network is any partition (S, T) of the vertices into two sets
such that s ∈ S and t ∈ T .

We leave the following as an exercise:

Proposition 1. For every st-cut (S, T),

ν(f) =
∑

e∈E∩S×T

f(e)−
∑

e∈E∩T×S

f(e). (1)

Note that the first term on the right-hand side of (1) represents the total flow through the edges
that cross the cut from the source-side S to the sink-side T , and the second term the total flow
through the edges that cross the cut in the opposite direction. For S = {s}, the second term in (1)
vanishes, and we obtain our definition of ν; for T = {t} we obtain our alternate definition.

The idea of capacity can be extended from single edges to cuts. In particular, the capacity of
a cut is defined as:

c(S, T) =
∑

e∈E∩S×T

c(e)

Note that only the edges that cross the cut from the source-side to the sink-side contribute to the
capacity of the cut; the edges that cross the cut in the opposite direction do not count.

2 Duality

A simple observation regarding network flow leads to the idea of weak duality. Here we make this
observation and also state strong duality, which will be proven later. Both are closely related to
duality in linear programming, and will be revisited when we cover the latter.

With regard to the structures presented previously, the following observation may be made:

2

Proposition 2. Given any flow f and any st-cut (S, T) in a network G, the value of the flow
cannot exceed the capacity of the cut:

ν(f) ≤ c(S, T).

This observation follows from Proposition 1. This is because the first term on the right-hand
side of (1) is upper bounded by the capacity of the st-cut (S, T), and the second term is nonnegative.
Moreover, the equality ν(f) = c(S, T) holds iff the following conditions hold simulteneously:

1. All “forward” edges from S to T are used at full capacity.

2. No “backward” edges from T to S carry flow.

Since Proposition 2 holds true for any flow and any st-cut, the maximum value of a flow is
upper bounded by the minimum capacity of an st-cut. This relationship is known as weak duality
for network flow problems:

MAXFLOW ≤MINCUT

In fact, we will later show that equality always holds:

MAXFLOW = MINCUT

This is known as the (strong) duality of network flow, and we will prove it in a constructive way.

3 Path Augmentation

There are many algorithms for finding a flow of maximum value in a given network. One class
of algorithms start with a zero flow, and iteratively augment the current flow by selecting a path
P from the source to the sink and pushing as much additional flow along that path as possible
without violating any of the capacity constraints. This process is known as path augmentation.

If we only consider paths in the original network, the process may get stuck at a suboptimal
flow. See the presentation from class for an example. We need to allow path augmentations that
undo (part of) the flow through some edges of the given network. In order to facilitate this process,
we define the residual network.

Definition 4 (Residual network). Given a flow f on a network G = (V,E), the residual network
Gf is a network on the same vertices and with the same source and sink, but with a possibly different
edge set. That edge set can contain both edges from the original network G as well as reverse edges.
Specifically,

Gf = (V,Ef)

where
Ef = {e ∈ E | f(e) < c(e)} ∪ {e ∈ E−1 | f(e) > 0}

The capacities of the residual network are calculated by subtracting the flow on an edge from the
capacity of that edge in G (if that edge is in E), or by the flow of e−1 if e is the reverse of an edge
in E.

cf (e) =

{

c(e)− f(e) e ∈ Ef ∩ E
f(e−1) e ∈ Ef ∩ E−1

3

The edges in a residual network either indicate flow that is still under an original edge’s capacity,
or flow that is in use and can be reverted. We then define an augmenting path as follows.

Definition 5 (Augmenting path). Given a flow f in a network G with source s and sink t, an
augmenting path P is a path in Gf from s to t.

Note that the residual network only contains edges with positive residual capacity. Therefore,
the existence of an augmenting path indicates that the value of the flow can be increased without
violating capacity limitations by increasing flow pushed along edges of G with capacity remaining
and/or decreasing flow along a currently used edge.

The idea then is to keep finding augmenting paths, using each to its capacity, recalculating the
residual network, and repeating until no more augmenting paths exist. This approach is known as
the Ford-Fulkerson scheme. The term “scheme” refers to the unspecified nature of the criterion for
selecting the augmenting path in case multiple exist.

Ford-Fulkerson Scheme(G = (V,E), s, t ∈ V)
f ← 0
While there exists an augmenting path in Gf :

select such a path P
fP ← maximum additional flow that can be pushed through P
f ← f + fP

Return f

Naturally, two questions arise about this scheme: “Does it halt?” and “If it halts, is it guaran-
teed to return a maximum flow?”. We will start by showing the latter. This will provide proof of
partial correctness of the Ford-Fulkerson scheme.

Partial correctness.

Theorem 1. The following are equivalent for any flow f in a network G:
(1) ν(f) is maximum.
(2) f has no augmenting path.
(3) There exists a cut (S, T) in G of capacity ν(f).

Proof. We argue using cyclic implications.
(1)⇒ (2). As shown, if there is an augmenting path P inGf , then there is as yet unused capacity

in all the edges of P , and we can push a positive amount of flow along these edges, increasing the
value of our flow by that amount. Hence, the presence of an augmenting path implies that f is not
maximal. The contrapositive proves our claim.

(2) ⇒ (3). Consider the set

S = {u ∈ V | u is reachable from s in Gf},

and let T = V \ S. Note that s ∈ S because of the trivial path from s to s in Gf . The hypothesis
that f has no augmenting path means that t ∈ T . Thus, (S, T) forms an st-cut.

Moreover, every edge e = (u, v) ∈ E∩S×T has to be used at full capacity under f . Otherwise,
e would be an edge in Gf , and since u is reachable from s in Gf by the definition of being in S, so

4

would v, which contradicts v being in T . Similarly, every edge e = (v, u) ∈ E ∩ T × S cannot be
used by f . Otherwise, the reverse edge e−1 = (u, v) ∈ S × T would be present in Gf , which leads
to the same contradiction as before. Thus,

f(e) =

{

c(e) if e ∈ E ∩ S × T
0 if e ∈ E ∩ T × S

As mentioned after Proposition 2, this implies that ν(f) = c(S, T).
(3)⇒ (1). This can be proven by simple application of weak duality,MAXFLOW ≤MINCUT .

Since our flow value, ν(f) is equal to the capacity of some cut by (3), we know that its value is
maximum.

Note the constructive nature of the proof of Theorem 1: Given a maximum flow f , it shows
how to construct a minimum cut in linear time.

Two corollaries are implied by Theorem 1.

Corollary 1 (Strong duality). The relationship

MAXFLOW = MINCUT

holds for all networks.

This follows from the implication (1)⇒ (3). In fact, the proof of Theorem 1 yields a linear-time
algorithm to construct minimum cut given a maximum flow.

Corollary 2 (Partial correctness of Ford-Fulkerson). If the Ford-Fulkerson halts, it returns a
maximum flow.

This follows from the invariant that f always represents a valid flow, and from the implication
(2) ⇒ (1).

Termination. So we now know that if the scheme halts, we will get a maximum flow. We now
turn to the question of whether the scheme will actually halt, as desired. Observe that if all the
capacities in G are integer-valued, then at every point in time the residual capacities, the flow
fP , and he flow f are integer-valued, and the Ford-Fulkerson scheme will increase the flow by a
minimum of 1 at each iteration. Hence, the number of iterations is bounded by the value of the
maximum flow. Therefore, if all capacities are integer, the scheme is guaranteed to halt. By scaling,
the same applies when all capacity ratios are rational.

However, there are examples where the capacity ratios are irrational for which there exist infinite
sequences of path augmentations that does not even converge to a maximum flow. The examples
may be contrived, but hint that the running time on less-contrived examples with integer capacities
may be bad. Indeed, the value of the maximum flow is not a desirable bound, as in the case of a
network like the one shown below. If the scheme repeatedly makes a poor choice for the augmenting
path, it improves the flow by only one at each iteration. If the maximal flow were a value like two
million as shown, what could simply be a two iteration job may be 6 orders of magnitude worse!

5

s t

10

10

1

10

106
6

6
6

This implies that we need to consider more carefully how the augmenting paths are chosen. We
present two good options, both of which generalize the optimal choice of path augmentations in
the example.

• Path of largest residual capacity.
One alternative is to choose an augmenting path for which we can increase our flow by the
maximum amount. We leave as an exercise to find such a path in linear time. Assuming all
capacities are integer, this method causes the Ford-Fulkerson scheme to run for O(m log(nC))
iterations, where C = maxe∈E c(e). The resulting running time is O(n +m2 log(nC)). Note
that the bound on the number of iterations is polynomial in the bit-length of the input, but
depends on the values of the numbers involved.

• Path with the smallest number of edges.
Another alternative is to choose an augmenting path with the least number of edges. This
can also be done in linear time, using a breadth-first search. The number of iterations for
the scheme using this method is O(nm) (see the handout), resulting in an overall running
time of O(nm2). Note that this alternative is always guaranteed to halt, no matter what the
capacities are. In fact, the bound on the number of iterations is polynomial in the size of the
network and does not depend on the bit-length of the numbers involved. A polynomial-time
algorithm of that type is called strongly polynomial-time.

There are other approaches to solving network flow problems, and some are more efficient than
the augmenting path solution presented here. The best algorithms to date are (a) one that works
for integer capacities and runs in time O(m ·min(n2/3,

√
m) · log(n2/m) · log(C)), and (b) one that

works for all capacities and runs in time O(nm). We still do not know anything close to linear time.
A recent breakthrough was the design of algorithms that produce an ǫ-approximate maximum flow
in time O(n+m1+o(1)/ǫ2).

4 Applications

We now present some interesting problems that can be reduced to maximum flow or minimum cut.

4.1 Bipartite Matching

Given: biparte graph G = (V,E) with left vertex set L and right vertex set R.

Goal: find a matching M of maximum size, i.e., a set M ⊆ E such that no two distinct edges
in M intersect.

6

A perfect matching is one where all vertices are matched. The problem can be thought of as
matching n boys and n girls into pairs in which the boy and girl both like each other. It can be
reduced to a network flow problem if the set of boys L and the set of girls R are graphed so that
each edge connects a boy b to girl g with infinite capacity if they like each other (unit capacity
would actually be fine for now, but we’ll see soon why infinite capacities are more suitable). We
create a source s with unit-capacity edges to all boys, and a sink t with unit-capacity edges from
all girls. We call the resulting network N . An example of such a network is shown below.

Boys Girls

Infinite
Weight

Unit
Weight

Unit
Weight

s t

Proposition 3. There is a one-to-one and onto correspondence between integer flows f in N and
matchings M in G. Moreover, ν(f) = |M |.

Proof. Given a matching M , for each edge {b, g} in M , consider a flow of one unit along the path
s→ b→ g → t. Those are all valid flows of unit value. As the edges in M do not have any vertices
in common, superimposing them yields a valid flow f of value |M |.

Conversely, given an integer flow f , the set of middle edges that carry a positive amount of flow
form a matching M . Indeed, no two middle edges that carry flow can share a boy b, as that would
mean b receives at least 2 units of flow from s. Similarly, no two middle edges that carry flow can
share a girl g. It also follows that middle edges do not carry more than one unit of flow. As the
middle edges form a cut, there have to be ν(f) that carry flow, so |M | = ν(f).

We leave it as a exercise that both mapping are each other’s inverse. The proposition follows.

If we solve the network flow problem using path augmentation, each augmentation will increase
the value of the flow by one. Thus, there are at most n augmentations, each taking O(m) work,
for a total running time of O(nm).

It is often interesting to investigate the meaning of the dual problem. In this case, an st-cut has
a finite value iff no edge (b, g) ∈ E is cut, i.e., E ∩ S × T = ∅, or equivalently, for each (b, g) ∈ E,
either b ∈ T or g ∈ S or both. Yet another way of stating this is that C

.
= (L∩ T)∪ (R ∩ S) forms

a vertex cover of G. We have the following propostion.

Proposition 4. There is a one-to-one and onto correspondence between st-cuts (S, T) of finite
capacity in N and vertex covers C in G. Moreover, c(S, T) = |C|.

As we can find a minimum cut in polynomial time, the proposition implies that we can find a
minimum vertex cover in a bipartite graph in polynomial time. This stands in contrast to finding
minimum vertex covers in general graphs, which is NP-hard.

7

Finally, suppose there does not exist a perfect matching. This means there exists an st-cut
(S, T) such that

c(S, T) = |L ∩ T |+ |R ∩ S| < n.

Now, observe that
|L ∩ T | = n− |L ∩ S|

(since there are exactly n boys), and

Γ(L ∩ S) ⊆ R ∩ S,

where Γ means “every girl liked by a boy in this set” (since otherwise the cut would have infinite
capacity). It follows that |Γ(L∩S)| < |L∩S|, that is, the set of girls liked by a boy in S is smaller
than the set of boys in S. This is the reason why there is no perfect matching. We have argued
Hall’s Theorem: a bipartite graph with left vertex set L of size n and right vertex set R of size n
has no perfect matching iff there exists a set A ⊆ L such that |Γ(A)| < |A|.

4.2 Project Selection

Given:

– a set L
.
= [n] of projects with benefit bi for i ∈ [n]

– a set R
.
= [m] tools with cost cj for j ∈ [m]

– bipartite graph with left vertex set L and right vertex set R indicating whether a project
i requires a tool j

Goal: Find a selection A of projects that maximizes the net revenue

∑

i∈A

bi −
∑

j∈Γ(A)

cj .

The fact that we need to select a subset A of the projects smells like a cut problem. However,
we need to maximize an objective. In order to reduce to a min-cut problem, first note that

max
A

∑

i∈A

bi −
∑

j∈Γ(A)

cj

= −min
A

∑

j∈Γ(A)

cj −
∑

i∈A

bi

Moreover, observe that

−
∑

i∈A

bi = −
n
∑

i=1

bi +
∑

i/∈A

bi

and that the first term
∑n

i=1 bi is a constant.
Now, we create a network as follows. The source s has an edge to each project i with capacity

bi, and each tool j has an edge to the sink t with capacity cj . Finally, we orient the edges of the
bipartite graph from the projects to the tools, and assign those infinite capacities. See 1 for a
sample graph.

8

s

Projects Tools

t

Figure 1: An example graph for the project selection problem

Similar to the setting of bipartite matching, there is a one-to-one and onto correspondence
between st-cuts (S, T) of finite capacity and selections of projects A and toolsB such that Γ(A) ⊆ B:
A = L ∩ S and B = R ∩ S. Moreover, the capacity of the cut equals

c(S, T) =
∑

i 6∈A

bi +
∑

j∈B

cj . (2)

Cuts of minimum capacity will have B = Γ(A), in which case the right-hand side of (2) coincides
with our objective function modulo the constant term

∑

i bi. As this constant does not affect which
selection A realizes the minimum, we can solve project selection by finding a minimum cut in the
network we constructed. Thus, we can solve project selection in time O(nm), where m denotes the
number of edges of the bipartite graph.

Note that the minimum vertex cover problem in a bipartite graph can be cast as a project
selection problem, where project i ∈ L corresponds to not taking up i in the vertex cover C, and
tool j ∈ R corresponds to taking up j in the vertex cover C. In fact, this way we can reduce the
minimum weighted vertex cover problem in bipartite graphs to min-cut, and solve it in polynomial
time.

4.3 Image Segmentation

Given:

– A grid of pixels i.

– For each pixel i, a likelihood fi that i belongs to the foreground, and a likelihood bi that
i belongs to the background

– For each pair {i, j} of neighboring pixels, a penalty sij for separating i and j. For
simplicity, we assume that sij = sji.

Goal: Find a partition of the pixels into a foreground F and a background B such that
∑

i∈F

fi +
∑

j∈B

bj −
∑

i∈F,j∈B,{i,j}∈E

sij (3)

is maximized.

9

We consider the pixels as the vertices of a grid graph G = (V,E). The value fi can be taken as
the intensity of pixel i, and bi its complement.

F B

1

f
1

n

b
n

i j

s
ij

s
ij

Figure 2: Image segmentation problem

As illustrated in Figure 2, we introduce two directed edges between each pair {i, j} ∈ E so that
both directions are covered, and we set the capacity of each of them to be sij . We create also a
source node s and a sink node t. Similar to the previous application, we introduce edges from s to
each pixel i with capacity fi, and edges from each pixel j to t with capacity bj . The capacity of an
st-cut (S, T) equals

∑

i∈T

fi +
∑

j∈S

bj +
∑

{i,j}∈E,|{i,j}∩S|=1

sij .

By similar manipulations as in our discussion of project selection, it follows that a minimum st-cut
(S, T) corresponds to an optimal partition (F,B) of the image maximizing our objective function
(3), where the correspondence is given by S = F ∪ {s} and T = B ∪ {t}.

10

