
CS 787: Advanced Algorithms

Greed

Instructor: Dieter van Melkebeek

We start our review of undergraduate algorithm design with the greedy method.

1 Paradigm

An algorithm that uses the greedy method attempts to construct an optimal (compound) solution
to a problem by optimally constructing components one by one. In general, building up locally
optimal components may not yield a globally optimal overall solution, but a greedy algorithm will
give an optimal result if these two coincide.

There are two main issues that arise when applying the greedy approach. First, in developing a
greedy algorithm, the order in which we consider components of the problem is crucial. Second, we
must also ensure the correctness of our greedy approach, i.e. we must prove that the greedy solution
is an optimal one. We will discuss two different methods of proof that achieve these objectives.

2 Proof Method #1: Staying Ahead

2.1 Description

The greedy method involves making a sequence of steps, where at each step a locally optimal choice
with respect to the overall goal is made. Using a cost measure, we make sure that at any one of
these steps, the greedy solution constructed up to that point is no worse than any other partial
solution up to that point. In other words, at each step we’ve made so far, the greedy choice was one
of possibly several optimal choices we could make. Formally, for any solution S and time step t, we
show that the greedy partial solution at time t is at least as good as the corresponding restriction
of S. Below are solutions to two problem instances using the greedy approach. Optimality is shown
via the staying ahead proof technique.

2.2 Interval Scheduling

Given: n jobs, specified by their time interval, i.e. [start, end].

Goal: Schedule the maximum number of non-overlapping jobs on a single machine.

To apply the greedy approach, we must decide in which order to consider the jobs. One possibility
would be to order these by doing the shortest job first. However, consider 3 jobs with times
1 : [0, 4.5], 2 : [5.5, 10], and 3 : [4, 6]. The maximum number we can schedule is 2, jobs 1 and 3, but
we will schedule only job 2 instead, ruling out both 1 and 3 as overlapping ones.

Another idea would be to order the jobs by earliest start time. This fails for a similar reason,
e.g. 3 jobs with times 1 : [0, 15], 2 : [1, 2], and 3 : [2, 3].

1

Job 3

Job 1 Job 2

Figure 1: Interval Scheduling–Counterexample 1

Job 1

Job 2 Job 3

Figure 2: Interval Scheduling–Counterexample 2

We will show that ordering the jobs by earliest end time will produce an optimal solution.
In the following theorem we formalize a solution to the problem as a subset S ⊆ [n]

.
=

{1, 2, . . . , n}.

Theorem 1. The Earliest Finish Time First ordering generates an optimal schedule with respect

to the goal. Formally, for all solutions S and all non-negative integers t ≤ |S|, the greedy algorithm

schedules at least t jobs and finishes these t jobs at least as early as the first t jobs in S.

Proof. We proceed by induction:

Base Case:

This is the case with t = 0: there is only one optimal solution, so the (vacuous) base case
holds.

Inductive step:

Consider the step after we have scheduled the first t jobs. We’d like to show that, given
the first t jobs produce an optimal schedule with respect to our criterion, our algorithm will
produce an optimal schedule with t+ 1 jobs.

Note that by assumption the end time of the first t jobs in the greedy schedule G is no worse
(no later) than that of the first t jobs in S. This implies that the (t+1)st job in S, say job i,
is compatible with the first t jobs in G. Thus, the greedy schedule produces a (t + 1)st job,
say job j, which may or may not equal i but definitely has a finish time no later than i by
the greedy criterion. Thus, the induction step holds.

The proof is illustrated below:
The running time of the resulting greedy algorithm is O(n logn) because of the sorting.

2.3 Shortest Paths

Given: A graph G = (V,E) [either directed or undirected] with non-negative edge lengths
ℓ : E → [0,∞), and two vertices s and t.

2

time

first t jobsG

first t jobs

k

kS

Figure 3: Interval Scheduling–maximum number of jobs scheduled

Goal: Find a shortest path from s to t in G, or report that there is no path from s to t.

Note the proviso that the edge lengths are non-negative. Later we will discuss a more general
version of the problem where edge “lengths” can be negative. The special case where all edge
lengths are the same can be solved using breadth-first search.

We define the distance d(s, t) from s to t as the length of a shortest path from s to t if there is
a path from s to t, and ∞ otherwise. Note that ℓ ≥ 0 guarantees that d(s, t) is well-defined, but
there may be multiple paths from s to t of length d(s, t).

The greedy approach we consider is known as Dijkstra’s algorithm. It gradually grows a set S
of vertices v ∈ V for which a path Pv of length d(s, v) from s to v is constructed. We start with
S+{s} as the empty path realizes d(s, s) = 0. In each step we select an edge (u, v) ∈ E with u ∈ S

and v ∈ V \S that minimizes the expression d(s, u)+ ℓ(u, v). If no such edge exists, we report that
there is no path from s to t. Otherwise we set Pv as the path Pu followed by the edge (u, v), and
extend S with v. We keep growing S until it includes t (or we report that there is no path from s

to t).

Theorem 2. The above approach produces a shortest path from s to t if there exists a path from s

to t.

Proof. First note that if there is a path from s to t and t is not yet in S, then the edge (u, v) exists.
It remains to establish the invariant that for every v ∈ S, Pv is a path from s to v of length d(s, v).

Let d∗
.
= d(s, u) + ℓ(u, v), and consider any path P from s to v. Since P starts in S and ends

outside of S, it contains at least one edge (u′, v′) such that u′ ∈ S and v′ ∈ V \ S. By the choice of
(u, v), the part of P from s to v′ has length at least d∗. Since ℓ ≥ 0, the entire path P has length
at least d∗. Since Pv goes from s to v and has length d∗, it is a shortest path from s to v.

When implementating Dijkstra’s algorithm, we keep track of a label λ(v) for every v ∈ V \ S,
which we set to the minimum value of d(s, u) + ℓ(u, v) over all u ∈ S for which (u, v) ∈ E (or ∞
if there is no such edge). We also keep track of which u realizes λ(v). In each step we need to
find the v ∈ V \ S with the minimum value λ(v), extend S by v, and update the labels of the
vertices that can be reached in one step from v. The total number of label updates is bounded by
the sum of the outdegrees, which equals m

.
= |E|. By keeping the vertices in V \ S in a priority

queue keyed on λ, the number of operations on the priority queue is at most n+m. In an efficient
priority queue each operation only takes O(logn) operations. The resulting overall running time
is O(n+m) log n). Compare this to the linear running time O(n+m) for breadth-first search. A
linear-time algorithm for shortest paths on graphs with non-negative edge lengths remains open.

Please refer to the presentation from class for a sample run of Dijkstra’s algorithm.

3

3 Proof Method #2: Exchange Arguments

3.1 Description

We show that we can gradually transform any optimal solution O into our greedy solution G

without every making the solution suboptimal. Each step involves a local modification (exchange)
to the solution.

3.2 Minimizing Maximum Lateness

Given: n jobs, specified by duration and deadline di.

Goal: Schedule all jobs on a single machine starting at time t = 0 in a non-overlapping way
so that maxi∈[n] lateness(i) is minimized, where lateness(i)

.
= max(0, finishtime(i)− di).

An example of an instance is given in Figure 4.

d1 d2 d3

time

Job 1

Job 2

Job 3

Let d_i = deadline i, for i = 1, 2, 3

Figure 4: Interval Scheduling–minimizing maximum lateness

Note that the only real decision to make is the order in which to schedule the jobs. Earliest
deadline first (EDF) turns out the be a good choice.

Theorem 3. Scheduling the jobs back-to-back and earliest deadline first yields an optimal solution.

Proof. We argue that any valid schedule can be transformed into the greedy EDF schedule G

without increasing the maximum lateness.
First note that eliminating the gaps between jobs cannot increase the lateness of any job. This

yields a solution in which jobs are scheduled back-to-back, but the ordering may deviate from EDF.
If so, there have to be two jobs, say 1 and 2, such that 1 is scheduled right before 2 but d1 > d2.
See the top of Figure 5) for an illustration.

Consider swapping jobs 1 and 2. This does not affect the lateness of the jobs other than 1 and
2. As job 2 is scheduled earlier, its lateness cannot increase. The lateness of job 1 can increase,
namely when d1 occurs before the finish time t∗ of job 2 before the swap. This is the situation
illustrated in Figure 5). However, note that the lateness of job 1 after the swap (the length of the
line segment from d1 to t∗) is no more than the lateness of job 2 before the swap (the length of the

4

Let denote lateness of job i

After Swap

Before Swap

Job 1 Job 2

Job 2 Job 1

d2 d1

d2 d1

Let d_i denote the deadline of job i, for i = 1, 2

Figure 5: Interval Scheduling–swap procedure illustration

line segment from d2 to t∗). This follows from the fact that d2 < d1. Thus, the maximum lateness
over all jobs does not increase under the swap.

The swap operation brings us closer to the greedy solution in the following precise sense. Define
an inversion as a pair of jobs that are scheduled in violation with the EDF rule, i.e., the job that
is scheduled earlier has a later deadline. Note that the above swap operation reduces the number
of inversions by one. Since the number of inversion is at most

(

n

2

)

, after a finite number of swaps
we reach a schedule with no inversion, i.e., the greedy schedule.

Thus, the maximum lateness of the greedy schedule is no more than of any valid schedule, i.e.,
the greedy schedule is optimal.

The running time of the resulting greedy algorithm is O(n logn) because of the sorting.

3.3 Minimum Spanning Trees

Given: An undirected connected graph G = (V,E) with edge weights w : E → (−∞,∞).
vertices.

Goal: Find a spanning tree such that the sum of weight of the edges is minimized.

There are several greedy algorihtms for constructing minimum spanning trees. One of them goes
over the edges in order of non-increasing weight and includes an edge in the tree unless it induces
a cycle in the subgraph constructed thus far. The algorithm is known as Kruskal’s algorithm. A
more descriptive name would be “tree-unioning algorithm”, as it can be viewed as starting from n

trees of size 1 and in each step unions two of them via an edge.

Theorem 4. Kruskal’s algorithm produces a minimum spanning tree.

5

Proof. Let K denote the subgraph returned by Kruskal’s algorithm. By construction K contains
no cycles. The connectivity of G implies that K is also connected. As K contains all vertices of G,
we have that K is a spanning subtree of G. All that remains is to argue the minimality of K.

We use an exchange argument to do so. Start from any spanning tree T of G, and assume
T 6= K. Then consider the first edge e in the greedy order that is in the symmetric difference of
K and T . Note that e cannot be in T ; if it were then T would contain a cycle, namely the cycle
that caused Kruskal’s algorithm not to include e in K. Thus, e is in K but not in T . Adding e to
T would induce a cycle C involving e. C contains an edge e′ that is in T but not in K; otherwise
K would also contain the cycle C. Let T ′ be T with e′ replaced by e.

• T ′ remains connected because it contains a path between the two endpoints of the removed
edge e′, namely C with e′ removed. As the number of edges in T and T ′ is the same, it follows
that T ′ is a spanning tree of G.

• As e was the first edge in the symmetric difference of K and T , e′ appears further down the
greedy order than e so w(e′) ≥ w(e). Since w(T ′) − w(T) = w(e) − w(e′), it follows that
w(T ′) ≤ w(T).

Note that the symmetric difference between K and T ′ is smaller than between K and T . Thus,
after a finite number of such exchange operations the resulting spanning subtree has to coincide
with K. As the weight has never increased, the weight of K is no more than of any spanning
subtree of G. Hence, K is optimal.

Kruskal’s algorithm needs to check whether an edge e = (u, v) induces a cycle in the subgraph
constructed thus far. We do so using a union-find data structure, which maintains the list of
connected components of the subgraph and allows two type of operations: merging two of the
connected components (union) and asking the label of the component of a given vertex (find).
Kruskal’s algorithm issues n−1 unions and at mostm finds. There exists a union-find data structure
for which the total amount of work for these operation is O(m · α(m)) time. Here α denotes the
inverse Ackerman function, which is extremely slowly growing and can be considered constant for
all practical purposes. A simpler implementation executes a union operation by relabeling the
vertices in the smaller connected component by the label of the larger one; for that data structure
the total amount of work for the union-find operations is O(m logm). As the sorting of the edges
by their weight takes time O(m logm), in either case the resulting running time is O(m logm).

Another greedy algorithm for constructing minimum spanning trees is the tree-growing algo-
rithm known as Prim’s algorithm. The algorithm has some similarity with Dijkstra’s algorithm in
that it grows a set S of vertices on which a minimum spanning tree is known. In each step, it adds
an edge connecting S to V \S of minimum weight to the tree. A similar exchange argument argues
optimality, and an efficient implementation using priority queues also runs in time O(m logm).
Please refer to the presentation from class for a sample runs of Kruskal’s and Prim’s algorithm.

6

