
CS 787: Advanced Algorithms

LP-Based Approximations

Instructor: Dieter van Melkebeek

We present methods for constructing approximation algorithms to NP-hard optimization prob-
lems using linear programming (LP). We typically obtain an LP relaxation of the problem by
formulating it as an integer linear program and dropping the integrality constraints. We then solve
the LP relaxation exactly, and apply various rounding strategies (including randomized rounding
and iterative rounding) to obtain a valid integral solution that is close to optimal. Alternately, we
exploit LP duality and employ a primal-dual approach, or consider a Lagrangian relaxation to deal
with difficult constraints.

1 Basic Approach

We explain the basic approach at a high level and illustrate it with Set Cover. Many NP-hard com-
binatorial optimization problems can be formulated as LPs with additional integrality constraints.
The fact that there are integrality constraints makes these LPs much harder to solve. LP with
integrality constraints is called Integer Linear Programming (ILP) and is an NP-complete problem.

Example: Set Cover:
Given a set of elements [m]

.
= {1, 2, . . . ,m}, a family S set of n subsets S1, S2, . . . , Sn ⊆ [m] whose

union equals [m], and weights w1, w2, . . . , wn.
Goal: Find a subfamily of S whose union equals [m] and has smallest totall weight.

We formulate Set Cover as an ILP by introducing an indicator variable xi for every i ∈ [n], with
the intended meaning that xi = 1 if Si is taken up into the cover, and 0 otherwise.

Objective Function: min
∑n

i=1wixi (minimize the total weight of the sets in the cover)
Constraints: (∀ j ∈ [m])

∑
i:j∈Si

xi ≥ 1 (cover all elements).
Integrality constraint: (∀ i ∈ [n])xi ∈ {0, 1} (every set is either in the set cover or not).

More explicitly, the integrality constraint can be rewritten as the conjunction of the linear con-
straints 0 ≤ xi ≤ 1 and the mere integrality constraint that xi is integer. Alternately, we could just
require that xi ≥ 0 and that xi be integer. �

The process to construct an approximately optimal solution to this problem has two steps:

1. Look at the relaxation of the problem: remove integrality constraints and use linear con-
straints. We can then solve the problem optimally using a LP algorithm.

OPTLP ≤ OPT (1)

OPTLP is the optimal solution of the relaxed LP, which can be constructed efficiently.

2. Exploit above to construct a valid solution that also satisfies the integrality constraints and
has cost at most ρ ·OPTLP .

1

This way of constructing approximations puts limitations on which approximation ratios you
can achieve.

Definition 1 (Integrality Gap).

γ (n) = max
|I|=n

OPT (I)

OPTLP (I)
(2)

γ(n) is a lower bound for ρ(n). Suppose you could realize a ρ(n) < γ(n), then you could reach
a solution less than OPT for some instance I.

Example: For our LP-relaxation of Set Cover one can show that

γ(n) = Θ(log n).

�

Now we introduce two approaches for solving step (2) from above:

• Rounding
Round an optimal solution for the LP. Rounding must be done in a way that does not
violate the linear constraints and in addition satisfies the integrality constraints and does not
deteriorate the objective function by too much.

• Primal - Dual
Construct some possibly invalid integral primal solution and a valid dual solution iteratively.
Use the value of the dual solution as a bound on OPTLP instead of OPTLP itself. This may
lead to a more efficient algorithm because you do not have to make a call to a black box LP
algorithm. On the other hand, this approximation may have a worse approximation ratio ρ.

OPTOPT LP

Fractional PrimalFractional Dual

Integral Primal

Figure 1: Solution space of optimization algorithm

Example: Set Cover

Primal Dual
min

∑n
i=1wixi max

∑m
j=1 yj

(∀j)
∑

i:j∈Si
xi ≥ 1 (yj) ⇐⇒ (∀i)

∑
j∈Si

yj ≤ wi (xi)

xi ≥ 0 yj ≥ 0

2

The primal problem is a covering problem; to cover a universe with the minimum possible cost.
The dual problem is a packing problem; to pack as much as possible into each set Si (maximum of
wi per set).

�

We now look at applying the two paradigms for step (2) to Set Cover.

1.1 Simple rounding

Let x∗ be an optimal solution to the LP relaxation. Try to distill an integral solution. Consider
the maximum number of times an element can occur over all sets, f = maxj |{i : j ∈ Si}|. At least
one term in

∑
i:j∈Si

xi ≥ 1 is at least 1/f ; round all terms greater or equal to 1/f up to 1 and the
rest down to 0. More formally, set

xi =

{
1 if x∗i ≥ 1/f
0 otherwise.

or equivalently, let
I = {i : x∗i ≥ 1/f}.

Determining I can be done in polynomial time.

Claim 1. I is a set cover.

Proof. For every element, at least one of the terms in the linear constraints of the primal problem
is at least 1

f that is, it is covered by I.

Claim 2. The solution obtained by rounding is at most f ·OPTLP .

Proof. ∑
i∈I

wi ≤ f ·
∑
i∈I

wix
∗
i (since for i ∈ I, x∗i ≥

1

f
)

= f ·OPTLP

So this is a factor-f approximation algorithm for the SET COVER problem, which is a gener-
alization of the Vertex Cover(VC) problem. For VC, the vertices are the sets and the edges are the
elements of the universe. Note that f = 2 for VC, because each edge is covered by two vertices.

This method of rounding works well for the SET COVER problem, but may not apply well to
all problems in general. So let us look at other methods.

1.2 Rounding based on Dual

Let y∗ be the optimal solution for the dual problem. Let us construct J ′ in the following way.

I ′ = {i : dual constraint for xi is binding for y∗}.

This means that the dual constraint corresponding to xi is an equality:
∑

j∈Si
y∗j = wi.

3

Claim 3. I ′ is a valid set cover.

Proof. We claim that I ⊂ I ′, which implies the claim because I is a valid set cover.
Consider an element i ∈ I. Membership to I means that x∗i ≥ 1

f , so the dual corresponding to

x∗i is binding (by Complementary Slackness). So, i ∈ I ′, and I ⊆ I ′.

Note that this solution is no better than the previous method since the weight of I ′ is at least
as large as the weight of I.

Claim 4. The solution obtained by rounding using the dual is at most f times OPTLP

Proof. ∑
i∈I′

wi =
∑
i∈I′

∑
j∈Si

y∗j

≤ f ·
m∑
j=1

y∗j

= f ·OPTLP
The first step follows from the fact that for every xi with i ∈ I ′, the corresponding constraint in
the dual is tight, i.e., wi =

∑
j∈Si

y∗j . The second step follows from the fact that y∗j can occur a
maximum of f times.

So, for the Set Cover problem, rounding based on dual also gives a factor-f approximation
algorithm. Now let us see another way of approximating LP problems, without actually making
any calls to the LP black box.

1.3 Primal-Dual Algorithm

For A′ all that we needed was:

1. An integral primal solution that is not necessarily feasible, namely a set I that may not cover
all elements of the universe.

2. For every i such that xi > 0, the corresponding dual constraint is binding.

3. y is a feasible dual solution.

These were the only conditions we needed for the proof of Claim 4. In particular, y need not be
an optimal dual solution – as soon as y is feasible, we know that the objective function is no more
than OPTLP , which is all we need for the proof of Claim 4.

At each point in the algorithm below, I ′ = {i : ith dual constraint is binding for y}.

4

Algorithm 1: Primal-Dual Algorithm for Set Cover using LP
Input: An instance of the Set Cover problem (SC)
Output: The approximate Set Cover I ′ of SC
PRIMAL DUAL(SC)
(1) while (∃j) j /∈ ∪i∈I′Si
(2) Increase yj such that at least one of the dual
(3) constraints containing yj becomes binding
(4) return I ′

The condition in the while loop is true only if there exists some j which is not covered by I ′.
In this case, all the dual constraints with yj are strict inequalities, otherwise the constraint would
be binding and j would belong to some Si for i ∈ I ′. So we can increase yj without violating the
constraints.

Note that the above is a polynomial time algorithm. Consider the following reasoning: once a
constraint is binding in the algorithm, it remains so since y′js can only increase. Therefore, there
will be at most m iterations of the while loop. Also, at the end of the algorithm, all three required
conditions are met which implies this algorithm produces a factor-f approximation.

Let us see how the required conditions are met:

• Condition 1 is satisfied since it is the halt condition of the while loop

• Condition 2 is satisfied by the definition of I ′.

• Condition 3 is satisfied since the algorithm starts with a feasible solution for y and increases
it without violating any of the constraints.

1.4 LP view of greedy approximation

The LP-based approximations we obtained so far all yield an approximation factor of f . Note that
f can be as large as n. Earlier we developed a greedy algorithm that yields the best known factor,
namely logarithmic.

Recall that in the greedy algorithm for the set cover problem, elements are added in the order
u1, u2, . . . , um. The price of adding an element uj is defined as

PRICE(uj) = Marginal cost per element at the time uj is added.

The cost of the greedy solution is,

m∑
j=1

PRICE(uj)

Given the interpretation of the dual variables as marginal increase in the objective per unit of
tightening the corresponding primal constraint, it is plausible to set PRICE(uj) to be yj . However,
this may violate the packing constraints of the dual. To fix this, we can divide all the yj ’s by a big
enough constant factor h so as to get a feasible dual solution. This is known as dual fitting.

5

The cost of the greedy solution is

m∑
j=1

PRICE(uj) = h ·
m∑
j=1

yj

≤ h ·OPTLP
≤ h ·OPT

Now we need to find a small value of h that is guaranteed to work.
For a fixed i, let Si = {uj1 , uj2 , . . . , uj|Si|

}, where j1 < j2 < . . . < j|Si|. As we argued when we
covered the greedy algorithm,

PRICE(ujk) = marginal cost for Si when ujk is considered

≤ wi
|Si| − k + 1

therefore,
|Si|∑
k=1

PRICE(ujk) ≤ H|Si| · wi.

Therefore, we can see that the constraint for Si in the dual formulation issatisfied if h ≥ H|Si|
for every i.

By setting h = Hg, where g = max |Si|, we show that the greedy solution gives us a factor Hg

approximation. Since g ≤ m, we obtain a rho-approximation with ρ = Hm ∼ ln(m).

2 Randomized Rounding

We’ll discuss the MAX SAT problem to show how randomized rounding can be used to obtain LP
approximations.

MAX SAT problem: Given m clauses c1, c2, . . . , cm on n variables and weights w1, w2, . . . , wm;
the goal is to find an assignment that maximizes W , where W is defined as∑

j:cj is satisfied

wj

2.1 A Trivial Approximation Algorithm

A trivial approximation algorithm would be to set each variable xi to 1 with probability 1
2 inde-

pendently. Then,

Pr [cj is satisfied] = 1−
(

1

2

)|cj |

6

Therefore,

E[W] =

m∑
j=1

wj

(
1−

(
1

2

)|cj |)

≥ 1

2

m∑
j=1

wj

≥ 1

2
OPT

(3)

Note that the approximation factor improves as the minimum clause size gets larger. For MAX
3-SAT we get a factor of 7

8 . It can be shown that this factor is tight for MAX 3-SAT.
The above only gives us the expected value of W , this does not guarantee that we’ll get a

approximate solution every time. One way to take care of this is to find the probability of getting
the above bound. If the probability is greater that 1

2 + 1
poly(.) , we can run the algorithm multiple

times and choose the best solution. The other way is to derandomize using conditional expectations.
The derandomization should involve polynomial steps. This can be done by finding E[W |xi = 0]
and E[W |xi = 1]. Choose the setting which gives E[W] ≥ 1

2

∑m
j=1wj and continue setting the

other variables in the same manner.
We’ll now improve this approximation factor by setting a variable xi to 1 with a probability

different from 1
2 . This is similar to flipping bent coins.

2.2 Flipping bent coins

We’ll set each variable xi independently such that

Pr[xi = 1] = p

where p ≥ 1
2 . Without loss of generality, assume that for each xi,∑

cj=xi

wj ≥
∑
cj=xi

wj

Therefore,

E [Weight of unit clauses that are satisfied] =
∑

cj is a positive unit clause

pwj +

∑
cj is a negative unit clause

(1− p)wj

≥
∑

cj is a positive unit clause

pwj

The probability that a non unit clause is satisfied is given as,

Pr [cj is satisfied] = 1−
(
p|Nj | (1− p)|Pj |

)
≥ 1− p2

7

Therefore,

E [Weight of non unit clauses that are satisfied] ≥
∑

cj is a non unit clause

(
1− p2

)
wj

Therefore,

E[W] = E [Weight of unit clauses that are satisfied] +

E [Weight of non unit clauses that are satisfied]

≥ min
(
p, (1− p2)

) ∑
cj is non unit or positive unit

wj

≥ min
(
p, (1− p2)

)
OPT

because,

OPT =
∑

cj is positive unit

wj −
∑

cj is negative unit

wj

This works whenever p ≥ 1
2 but it works best when p = 1− p2 which is when p = .608. So we

have a factor of .608.
So how can we improve on this further? We can pick a bias differently for each variable.

2.3 Using separate probabilities for every variable

This is where linear programming comes in. The following is a linear programming relaxation of
MAX SAT.

max
m∑
j=1

wjyj (4)

s.t.
yj ≤

∑
i∈Pj

zi +
∑
i∈Nj

(1− zi) (5)

and
yj ≤ 1 (6)

0 ≤ zi ≤ 1 (7)

We will now solve this linear program relaxation to get values for the y∗’s and z∗’s. We will set
xi independently such that

Pr(xi = 1) = z∗i (8)

The probability that cj is not satisfied is the probability that every variable gets the wrong
sign. This can be written as ∏

i∈Pj

(1− z∗i) ∗
∏
i∈Nj

z∗ (9)

8

which, by the geometric mean leq arithmetic mean inequality can be bounded as

≤

 1

|cj |

∑
i∈Pj

(1− z∗i) +
∑
i∈Nj

z∗i

|cj | (10)

≤
(

1−
y∗j
|cj |

)|cj |
(11)

We would like to make the equation above linear in yj so that we can relate it to our objective
function.

Pr[cj is satisfied] ≥ 1−
(

1−
y∗j
|cj |

)|cj |
(12)

≥

[
1−

(
1− 1

|cj |

)|cj |]
∗ y∗j (13)

≥
(

1− 1

e

)
∗ y∗j (14)

Therefore the expected weight can be written as

E[W] =

m∑
j=1

wj ∗ Pr[cj is satisfied] (15)

≥
(

1− 1

e

)
∗

m∑
j=1

wj ∗ y∗j =

(
1− 1

e

)
∗OPTLP (16)

≥
(

1− 1

e

)
∗OPT = .632 ∗OPT (17)

So this gives a factor of .632 * OPT which is a little better than .618 * OPT. The interesting thing
to note is that this approach actually behaves better as the clauses get shorter which is the opposite
behavior of our previous approach which behaves better as clauses get longer.

We would like to get the best of both worlds, and to accomplish this we can run both algorithms
and take the best of the two. Therefore the expected value that a clause is satisfied by an assignment
chosen is ≥ 1

2 (E[cj is satisfied by ALG1] + E[cj is satisfied by ALG2]). This can be written as

≥ 1

2

[
1−

(
1

2

)|cj |
+

(
1−

(
1− 1

|cj |

)|cj |)
∗ y∗j

]
(18)

≥ 3

4
∗ y∗j (19)

We can therefore get an approximation ratio of 3
4 which is the best we can do with this approach.

Consider the equations:
x1 ∨ x2 (20)

x1 ∨ x2 (21)

9

x1 ∨ x2 (22)

x1 ∨ x2 (23)

OPT = 3, and for our linear program, we can set all zi = 1
2 and all yj = 1 which will get us

OPTLP = 4 Therefore we have an example that shows this approximation is tight.

3 Iterative Rounding

In general, however, rounding may not always lead to a valid solution. We present a different
rounding technique called Iterative Rounding which handles this issue in some cases.

As before we will solve the LP Relaxation exactly and then round up those components which
are larger than 1/2. The additional step is to incorporate the rounded solution in the LP and iterate
until a valid solution is found. We will apply Iterative Rounding to obtain a factor 2 approximation
for the Survivable Network Design Problem.

The Survivable Network Design problem is defined as follows:

Given: undirected graph G = (V,E), edge weights we ≥ 0, requirements r(u, v) ∀u, v ∈ V

Goal : Find a subgraph F ⊆ E s.t ∀u, v ∈ V the number of edge-disjoint paths between u and v in
(V, F) is ≥ r(u.v) and ∑

e∈F
we is minimized

Notes:

• We can think of the graph G as a network where the vertices V are routers and the edges E
are links between the routers. For each pair of routers u and v, we would like a guarantee of
a variety of different routes between the routers so that if a single router in the network fails,
u and v will still be connected in the network.

• We will assume that F = E is a solution that works.

We can efficiently verify whether there exists r disjoint paths from (u, v) using the max-flow
algorithm. To do so, set all edge capacities to 1, find the max flow using u as the source and
v as the sink and verify that the flow is ≥ r. We can use this verification to check if F = E
is a valid solution by considering all pairs of vertices (u, v).

3.1 LP relaxation

Unlike previous examples we have seen, the ILP formulation that corresponds to the Survivable
Network Design problem is not immediately clear. The formulation will be based on the following
lemma:

Lemma 1. For xe ≥ 0 and r(u, v) ≥ 0, consider graph G with edge capacities xe. Then,
∀u, v ∈ V there is a flow in G from u to v of value ≥ r(u, v). (∗)

m

(∀S ⊆ V)
∑
e∈δ(S)

xe ≥ max
u∈S,v∈S̄

r(u, v)

where δ(S) is the set of edges that cross the cut between S and S̄.

10

Proof.

(⇒) This direction follows from the max-flow min-cut theorem. Fix a cut S. If there exists a
flow in G, ∀(u, v) of value ≥ r(u, v), then the sum of the edge capacities crossing S must be
≥ maxu∈S,v∈S̄ r(u, v).

(⇐) This direction also follows from the max-flow min-cut theorem. Fix any two vertices u, v.
The right hand side implies that the flow between (u, v) is ≥ r(u.v).

Notes:

• If xe ∈ {0, 1} and r(u, v) is integral then (∗) is exactly what we need to find for the survivable
network design problem

• The above lemma applies even if the xe’s and r’s are non-integers.

In the ILP below, xe will indicate whether e ∈ F . Let f0(S) = maxu∈S,v∈S̄ r(u, v). The ILP
formulation below exactly characterizes our problem for f = f0.

min
∑
e∈E

wexe

s.t(∀S ⊆ V)
∑
e∈δ(S)

xe ≥ f(S)

xe ∈ {0, 1}

The LP relaxation is obtained by replacing the constraint xe ∈ {0, 1} with 0 ≤ xe ≤ 1.
On first observation it seems that we won’t be able to solve this LP in polynomial time since

there are exponentially many subsets of V which would require us to handle exponentially many
constraints. However, so solve an LP in polynomial time it suffices that the number of variables is
polynomial, and that we can provide a separation oracle that runs in polynomial time.

For the problem that we are looking at, the input to the separation oracle will be a candidate
x with 0 ≤ xe ≤ 1∀e ∈ E. To get a separation oracle we use the same trick that was described to
verify if F = E is a valid solution - run the max-flow algorithm with edge capacities set to the xe’s
and verify that the flow is ≥ f(S). By lemma 1, if this flow cannot be realized we can find a cut
S, which violates the constraints. Also note that since the LP above has one variable per edge, the
number of variables is polynomial. Together with the separation oracle that runs in polynomial
time, this allows us to solve the LP in polynomial time.

3.2 Iterative rounding algorithm and analysis

The general idea for the algorithm is as follows. We hope the LP given above will produce some
xe ≥ 1

2 , which we will round up to 1. It turns out this will be the case if f(S) is weakly super-
modular (defined below). After rounding, we will modify the original LP and iterate until we find
a valid solution. We will see that to modify the LP we will only need to change equation f(S).

11

Definition 2 (Weakly Super-Modular). f : 2V → R is weakly super-modular if f(V) = 0 and
∀A,B ⊆ V

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) OR

f(A) + f(B) ≤ f(A−B) + f(B −A)

Note that a super-modular function satisfies both conditions.

Lemma 2. f0 is weakly super-modular.

The proof is left as an exercise. Our algorithm will depend on the following key lemma whose
proof we omit.

Lemma 3 (Key Lemma). For any weakly super-modular f each vertex of the linear program given
above (and therefore any optimal solution to the linear program) has at least one e s.t xe ≥ 1

2

This leads to the following algorithm:

Algorithm 2: Iterative Rounding for Survivable Network Design
Input: An instance of the Survivable Network problem (SN)
Output: The approximate subgraph F of SN
ITERATIVE ROUNDING(SN)
(1) F ← ∅
(2) while (F is not a valid solution to SN)
(3) x← solution of LP for G = (V,E − F) with
(4) f(S) = f0(S)− |δ(S) ∩ F |
(5) F ← F ∪ {e|xe ≥ 1

2}
(6) return F

Correctness

• The first question to ask is whether the above algorithm will halt. The answer is yes, provided
each f(S) is weakly super-modular. If this is the case then in each iteration we will round at
least one edge up to 1. This edge will be added to F . Since F = E is a valid solution (by
assumption), we will iterate for at most |E| steps.

To see that each f(S) is weakly super-modular, note that ∀F ⊆ E, g(S) = |δ(S) ∩ F | is
sub-modular. This is straightforward to verify given the following definition.

Definition 3 (Sub-modular). g : 2V → R is sub-modular if g(V) = 0 and ∀A,B ⊆ V

g(A) + g(B) ≥ g(A ∪B) + g(A ∩B) AND

g(A) + g(B) ≥ g(A−B) + g(B −A)

Since g(S) is sub-modular and we get f(S) by subtracting g(S) from f0(S) in step (4) of the
algorithm it ensures that f(S) remains weakly super-modular (subtracting a sub-modular
function from a weakly super-modular one yields a weakly super-modular one).

• Can we solve each LP in polynomial time (i.e., construct separation oracles efficiently)? The
answer here is yes. We use the same trick that was used to produce the separation oracle
for the original problem - use the max flow algorithm by setting the edge capacities to 1 for
edges in current solution F and verifying that the flow is ≥ f(S).

12

Approximation ratio We argue that the algorithm gives a factor-2 approximation.

Lemma 4. The following is true of the F that is returned by the algorithm∑
e∈F

we ≤ 2
∑
e∈E

wex
(0)
e

where x(0) is the solution to the LP in the first iteration of the loop.

Notice that the right hand side of the above inequality is equal to OPTLP (the optimal solution
of the original LP relaxation), and we know that OPTLP ≤ OPT . This lemma implies that the
algorithm is a factor-2 approximation.

Proof. We will prove by induction on the number of iterations of the while loop. Suppose the while
loop runs for k iterations. We will assume that F = ∅ is not a valid solution, so the base case will
be k = 1.

base case: For k = 1, the loop only runs one time, so this case is similar to the vertex cover factor 2
approximation algorithm. The algorithm is a factor 2 approximation algorithm because each
xe that is taken is increased by at most a factor of 2.

induction step: For this case, we can assume k ≥ 2. We will analyze the algorithm in terms of two phases:

A) The first iteration of the while loop. This phase adds F0 to F , and the solution to the
LP denoted LP (0) in this phase is x(0).

B) All remaining iterations of the while loop. This phase adds F1 to F , and the first
iteration in this phase will have a LP denoted LP (1) with solution x(1).

First let us consider the A) phase: ∑
e∈F0

we ≤ 2
∑
e∈F0

wex
(0)
e

because all we have done after phase A) is to round up xe such that e ∈ F0 from at least 1/2
to 1.

Now we analyze the B) phase. Assume the lemma holds for any instance that takes k it-
erations, and consider an instance G = (V,E) that takes k + 1 iterations. Notice that the
B) phase is equivalent to running the algorithm on G1 = (V,E − F0) and initial function
f1(S) = f0(S)− |δ(S)∩F0|. Running the algorithm on this instance will require k iterations,
so the induction hypothesis says that∑

e∈F1

we ≤ 2
∑

e∈E−F0

wex
(1)
e .

The following key observation will allow us to conclude the analysis for the B) phase.

Observation 1 (Key Observation) x(0) restricted to E − F0 is a feasible solution to LP (1).

13

Proof. Fix a set S ∈ V . Because x(0) is a solution to LP (0), it satisfies the constraints of
LP (0), namely ∑

e∈E,e∈δ(S)

x(0)
e ≥ f0(S).

Because each of the variables in x(0) is ≤ 1∑
e∈E−F0,e∈δ(S)

x(0)
e + |δ(S) ∩ F0| ≥

∑
e∈E−F0,e∈δ(S)

x(0)
e +

∑
e∈F0,e∈δ(S)

x(0)
e =

∑
e∈E,e∈δ(S)

x(0)
e ≥ f0(S).

Rearranging terms, we get that∑
e∈E−F0,e∈δ(S)

x(0)
e ≥ f0(S)− |δ(S) ∩ F0| = f1(S)

which means that x(0) is satisfies the constrains of LP (1).

Combining this with the fact that any feasible solution to LP (1) is ≥ the optimal solution,
and our induction hypothesis, we get that∑

e∈F1

we ≤ 2
∑

e∈E−F0

wex
(1)
e ≤ 2

∑
e∈E−F0

wex
(0)
e .

Adding the components from phases A) and B), we have that∑
e∈F

we ≤ 2
∑
e∈E

wex
(0)
e

or in other words, the algorithm is a factor 2 approximation algorithm.

4 Primal-Dual Approach

We now revisit in more detail the primal-dual approach to developing LP-based approximation
algorithms. Recall that when we can apply this approach, we eliminate the need to use a linear
program solver as a black box, potentially giving us a large efficiency benefit. This time, we will
apply the primal-dual method in a more complicated way than we have seen before. Specifically, we
will use it to develop a factor 3 approximation algorithm for the metric facility location problem.
We begin by providing a description of the problem and its formulation into a linear program. We
then develop our primal-dual algorithm in two attempts. The first will give us the general idea,
but not quite provide an upper bound on our cost. The second attempt will build on the result
from the first to obtain a factor 3 approximation algorithm.

We first formally define the (Metric) Facility Location Problem. Given: A set F of facilities
with fi representing the cost to open facility i, a set C of clients with cij representing the cost to
serve client j from facility i.
Goal: Find a subset of facilities I ⊆ F and an assignment of clients to facilities φ : C → I such
that the total cost given by the following equation is minimized.∑

i∈I
fi +

∑
j∈C

cφ(j)j

14

The metric variant of the facility location problem adds the additional requirement that the cij ’s
obey the triangle inequality. More precisely, we assume the following: For all facilities i and i′, and
for all clients j and j′,

cij′ ≤ cij + ci′j + ci′j′ .

j’

i

j

i’

4.1 LP relaxation

Following our approach for developing approximation algorithms using linear programming, we
now develop an integer linear program (ILP) for this problem, where variables xi indicate whether
facility i is open, and variables yij indicate whether client j is served by facility i.
Our ILP is as follows:

min
∑
i∈F

fixi +
∑
i∈F
j∈C

cijyij (24)

subject to
∑
i∈F

yij ≥ 1 ∀j ∈ C (25)

yij ≤ xi ∀i ∈ F, j ∈ C (26)

xi ∈ {0, 1} ∀i ∈ F (27)

yij ∈ {0, 1} ∀i ∈ F, j ∈ C (28)

Constraint (25) ensures that every client is assigned to some facility. Constraint (26) enforces that
every client is served by an open facility.

We now look at the LP relaxation of above formulated ILP. As we’ve done before, we introduce
inequalities instead of integral constraints in our LP relaxation. We rewrite constraints (27) and (28)
as follows:

xi ≥ 0 ∀i ∈ F (29)

yij ≥ 0 ∀i ∈ F, j ∈ C (30)

We note that we can simply use xi, yij ≥ 0 instead of 0 ≤ xi, yij ≤ 1 in the relaxation, since an
optimal solution would never have these variable set to larger than 1. This is useful, since removing
constraints in the primal will reduce the number of variables we need to deal with in the dual.

15

Dual LP We use the standard procedure for obtaining the dual to get the following LP:

max
∑
j∈C

uj (31)

subject to
∑
j∈C

vij ≤ fi ∀i ∈ F (32)

uj − vij ≤ cij ∀i ∈ F, j ∈ C (33)

uj ≥ 0 ∀j ∈ C (34)

vij ≥ 0 ∀i ∈ F (35)

Constraint (32) in the dual corresponds to the xi variables in the primal, and constraint (33) cor-
responds to the yij variables. Note that without loss of generality, we can substitute constraints (33)
and (35) with the following:

vij = max(0, uj − cij) ∀i ∈ F, j ∈ C (36)

This is because the vij ’s do not appear in the dual’s objective function. Thus, if we have some
setting of uj ’s such that it is possible to assign the vij ’s and make the solution feasible, the equation
above will realize this assignment without affecting our objective value.

The intuitive meaning of a dual is not always apparent. Since we typically minimize some
objective in the primal, we consider that we are trying to minimize the amount we spend in
achieving some goal. In the dual, we take the position of a service provider who would like to
charge as much as possible subject to some constraints. In this problem, the intuitive meaning
of the dual is obvious. The dual maximizes the prize charged to clients, which is the sum of two
components. The first component, vij , represents the charge used to pay for the opening of facilities.
The other component, uj , is a per client connection charge.

4.2 First primal-dual attempt

In this section, we make a first attempt at using the primal-dual method to obtain an approximation
algorithm for the metric facility location problem. We will find that our approach is not quite
sufficient, and will refine it in the next section to obtain a factor 3 approximation algorithm.

We start with a solution that is feasible in the dual and in-feasible integral in the primal.
We then iterate, at each step making our dual solution more optimal and/or making our primal
solution more feasible. We do this until we have a solution that is feasible in the primal. Applying
the primal-dual method to the current problem, we want to relate the cost of the primal to the
cost of the dual. The two ideas that constitute our first attempt are outlined below:

1. We will only assign a client to a facility i if the facility is already open and cij ≤ uj . This
will guarantee that our total assignment cost obeys:∑

j∈C
cφ(j)j ≤

∑
j∈C

uj ≤ OPTLP

Note that
∑

j∈C uj is simply the dual objective function, and, since the dual is solution
feasible, is a lower bound on the LP relaxation’s optimal solution.

16

2. We will only open a facility in the primal if its corresponding constraint in the dual is tight.
We will then modify the dual variables in order to improve dual solution by assigning clients
to facilities just opened.

We now present our first attempt algorithm. In the algorithm description, the set I will represent
the set of “fully paid for” facilities, and the set J represent will represent the set of assigned clients.

I := {i ∈ F |
∑
j∈C

vij = fi}

J := {j ∈ C | (∃ i ∈ I) ui ≥ cij}

Algorithm 3: First attempt at metric facility location approximation.
Input: An instance of metric facility location, (F,C, c).
Output: A set I of open facilities, and assignment φ of facilities to clients.
FIRST ATTEMPT(F,C, c)
(1) (u)← 0
(2) while J 6= C
(3) uniformly increase each uj for j ∈ J̄ until I or J changes
(4) return I, φ

The main advantage of this algorithm is that we are not using a linear program solver as a
black box, and are thus avoiding its expensive operation. In each iteration, the set J can change
because some j can now pay for its connection to some i already in I, and the set I can change
because a new facility gets paid for.

Termination It is not immediately apparent that this algorithm will halt but follows from the
fact that I and J cannot shrink. One of two cases will happen each time we uniformly increase a
set of uj ’s. The first case is that for some client uj is increased to exceed cij , and thus we will add
the client to J . The second case is that some facility constraint becomes tight, in which case that
facility is added to I. Since increasing the uj ’s as done in our algorithm will always result in one
of these two actions, and these can only be done a finite number of times before J = C. Hence,
the algorithm is guaranteed to halt.

Analysis Note that the effect of increasing the dual uj variables uniformly guarantees that clients
that are served later are charged at least as much. Thus, suppose client j1 is served before j2, then
uj1 ≤ uj2 .
The total facility opening cost is given by:∑

i∈I
fi =

∑
i∈I

∑
j∈C

vij (37)

=
∑
j∈C

∑
i∈I∩N(j)

vij (38)

17

Equation (38) is obtained by rearranging the summation and using only the neighborhood of each
client in the summation in the second term in equation (37). The neighborhood of client j denoted
by N(j) is the set of facilities where j can be served.

N(j) = {i ∈ F | ui ≥ cij} (39)

The neighborhood relation changes over time, but once a facility enters the neighborhood of some
client, it will remain there for the duration of the algorithm. In the next section, we will operate on
the final state of the neighborhood relation in modifying our solution. Similarly to neighborhood
of a client, the strong neighborhood of client j denoted by Ñ(j) is defined as:

Ñ(j) = {i ∈ F | ui > cij} (40)

Applying our earlier observation that vij = max(0, uj − cij) to equation (38), we get:∑
i∈I

fi =
∑
j∈C

∑
i∈I∩N(j)

max(0, uj − cij)

(uj − cij) will always be non-negative, since i is in the neighborhood of j (i.e., uj ≥ cij). We can
thus drop the max() from the above equation.∑

i∈I
fi =

∑
j∈C

∑
i∈I∩N(j)

(uj − cij) (41)

This result looks promising in two ways. First, suppose |I ∩ N(j)| ≤ 1, then the total facility
opening cost in the primal is bounded by OPTLP as shown below:∑

i∈I
fi ≤

∑
j∈C

uj ≤ OPTLP (42)

Secondly, suppose that for all j, |N(j) ∩ I| = 1, then our choice of φ is fixed, since each client can
only be assigned to one facility. Thus, we have:∑

i∈I
fi =

∑
j∈C

(ui − cφ(j)j)∑
i∈I

fi +
∑
j∈C

cφ(j)j =
∑
j∈C

ui

This would imply an optimal integral solution to our problem, and this gives us a factor 1 approx-
imation algorithm! Of course, we cannot hope to realize this unless P = NP. This analysis does,
however, hint at the modification that we need to make. The condition |N(j) ∩ I| = 1 is very
unlikely to be satisfied for all j ∈ C. We address this aspect in the next section.

5 Second primal-dual attempt

The first attempt yields I ⊆ F such that each j ∈ C has at least one neighbor in I, where i and j are
neighbors if j can pay for the connection cost to i (in other words, if uj ≥ cij). If we then connect

18

each j to one of its neighbors, the problem is that clients may be contributing to the opening cost
of facilities they’re not assigned to. We argued that if for each client j ∈ C, |N(j)∩ I| ≤ 1, we can
also bound the total facility opening cost by OPTLP . If we look carefully at that argument from
the previous section, we can see that the same conclusion holds for the strong neighborhood, i.e., if
for each client j ∈ C, |Ñ(j) ∩ I| ≤ 1, we have the same bound of OPTLP . In the second attempt,
we will add two phases to our first attempt.

5.1 First phase: Pruning

In the first phase, we will construct the set of facilities I ′ ⊆ I in a greedy way so as to ensure that
no j has more than one strong neighbor in I ′. We go over the set I in the order in which facilities
where opened in the first attempt, and then add them to I ′ only if |I ′ ∩ Ñ(j)| ≤ 1 for all j ∈ C.

5.2 Second phase: Re-assignment

The problem with constructing this subset I ′ is that some clients might be left without a facility
assigned. Thus, in this phase we reassign these “abandoned” clients (i.e., clients that were served
by removed facilities in I − I ′) to facilities in I ′ without increasing our cost by too much.

Let i be a facility in I − I ′. Let client j be a client assigned to facility i in the first attempt,
i.e., φ(j) = i. We want to reassign this “abandoned” client to some facility in I ′. There has to be
an i′ ∈ I ′ and j′ ∈ C such that {i, i′} ∈ Ñ(j′). We reassign client j to facility i′. The following
figure illustrates the scenario, where the dotted line represents a neighborhood edge, and the solid
lines represent strong neighborhood edges:

j’

i’

j

i

We also need to calculate the new cost of serving client j. We can compute an upper bound for
this new cost ci′j using the triangle inequality as follows:

ci′j ≤ ci′j′ + cij′ + cij

≤ uj′ + uj′ + uj

Claim 5. uj′ ≤ uj
Proof. The value of uj is the time at which client j gets served, i.e., the first time j can afford
the connection cost to an open facility. If φ(j) = i then uj is no earlier than the opening time of
facility i. On the other hand, since j′ makes a positive contribution to the opening cost of i′, this
means that the time uj′ that j′ gets served is no later than the opening time of facility i′. Since i′

is opened before i, the claim follows.

Using the above claim, the upper bound of the re-assignment cost ci′j becomes:

ci′j ≤ 3uj (43)

Once this client j is reassigned, we find the next “abandoned” client by the procedure described
earlier, and reassign it. This is repeated until we have reassigned every “abandoned” client.

19

5.3 Analysis

Now, we turn to the analysis of this technique. Let φ′ : C− > I ′ denote the final assignment. By
construction, if j ∈ C makes a positive contribution vij to the opening cost fi of a facility i ∈ I ′,
then j gets served from i, i.e., φ(j) = φ(j′) = i. Let C ′ denote the union of all such elements over
all i ∈ I ′. It follows that the total cost of facility opening is given by:∑

i∈I′
fi =

∑
j∈C′

(uj − cφ′(j)j). (44)

The total cost of facility assignment is given by the following equation, where the summation
in C can be split into two summations on disjoint sets C ′ and C − C ′.∑

i∈F
j∈C

cijyij =
∑
j∈C

cφ′(j)j

=
∑
j∈C′

cφ′(j)j +
∑

j∈C−C′

cφ′(j)j

≤
∑
j∈C′

cφ′(j)j +
∑

j∈C−C′

3uj

≤
∑
j∈C′

3cφ′(j)j +
∑

j∈C−C′

3uj (45)

Adding equation (45) and 3 times equation (44), we get the following:

3
∑
i∈I′

fi +
∑
j∈C

cφ′(j)j ≤ 3
∑
j∈C

uj (46)

By dropping 2
∑

i∈I′ fi on the left hand side, we get:∑
i∈I′

fi +
∑
j∈C

cφ′(j)j ≤ 3
∑
j∈C

uj

≤ 3 OPTLP

Thus, we have a factor 3 approximation algorithm for metric facility location problem. We note
that this factor 3 approximation is not the best that we know of. The current best known factor is
1.735, which can be obtained by using a more complicated rounding scheme than we have presented
thus far. We also know that the best factor we can hope to achieve if P 6= NP is 1.427.

6 Lagrangian Relaxation

The techniques we described so far for obtaining LP-based approximations often work well when
the constraints are localized but not when they are global. For handling the latter, one can use
Lagrangian relaxation, a technique to move global constraint to the objective function alleviating
the difficulty in solving. We will use this technique to develop a factor 6 approximation for the
k-Median problem.

We first formally define k-Median problem.

20

Given: A set F of facilities, a set C of clients, cost cij to serve client j to facility i, and k ∈ N.
Goal: Find a subset of facilities I ⊆ F to open with |I| ≤ k, and an assignment of clients to
facilities φ : C → I such that the following total cost is minimized:∑

j∈I
cφ(j)j

This problem is similar to some other problems discussed before: such as k-center problem, and
facility location problem. The metric variant of the problem adds the additional constraint that
the cij ’s obey the triangle inequality. As observed in the Primal-Dual LP approximation lecture,
the triangle inequality applies as follows to this case:

j’

i

j

i’

cij′ ≤ cij + ci′j + ci′j′

6.1 Relaxations

We develop an integer linear program (ILP) for the k-Median problem using variables xi to indicate
whether facility i is open, and variables yij to indicate whether client j is served by facility i.

The ILP is formulated as follows:

min
∑
i∈F
j∈C

cijyij (47)

subject to
∑
i∈F

yij ≥ 1 ∀j ∈ C (48)

yij ≤ xi ∀i ∈ F, j ∈ C (49)∑
i∈F

xi ≤ k (50)

xi ∈ {0, 1} ∀i ∈ F (51)

yij ∈ {0, 1} ∀i ∈ F, j ∈ C (52)

Constraint (48) ensures all clients are served by at least one facility. Constraint (49) enforces
that the clients are served only by open facilities. Constraint (50) ensures at most k facilities are
opened.

LP relaxation Solving the formulated ILP is difficult, we relax the integral constraints to linear
form, which transforms the NP-hard ILP problem to relaxed LP that can be solved in polynomial
time. Integral constraints (51) and (52) are transformed to linear constraints as follows:

xi ≥ 0 ∀i ∈ F (53)

yij ≥ 0 ∀i ∈ F, j ∈ C (54)

21

Note that the above constraints are not upper bounded by 1 (i.e., 0 ≤ xi, yij ≤ 1), since in the
optimal solution these variable will never be set to greater than 1.

Lagrangian relaxation (LPLR) Constraint (50) in LPkM is a “global” constraint, which makes
solving the problem more difficult. To ease solving problems with such constraints, we utilize a
technique called Lagrangian relaxation, where “global” constraints are removed and moved to the
objective function with assigned weights (the Lagrangian multipliers). Thus, applying Lagrangian
relaxation to LPkM, we obtain the following relaxed LP:

min
∑
i∈F
j∈C

cijyij + λ(
∑
i∈F

xi − k) (55)

subject to
∑
i∈F

yij ≥ 1 ∀j ∈ C (56)

yij ≤ xi ∀i ∈ F, j ∈ C (57)

xi ≥ 0 ∀i ∈ F, j ∈ C (58)

yij ≥ 0 ∀i ∈ F, j ∈ C (59)

λ in the objective function (55) is the Lagrangian multiplier. For a fixed λ > 0, ignoring the
constant −kλ, this formulation becomes the facility location problem with fi ≡ λ.

6.2 First attempt

Our first idea for an efficient algorithm is to run the primal-dual approximation algorithm for this
instance of facility location problem. The dual for LPLR is obtained using the standard technique
to generate the dual, where the variables ui and vij correspond to constraints (56) and (57) in the
primal (LPkM) respectively. Thus, dual is as follows:

max
∑
j∈C

uj − kw (60)

subject to
∑
j∈C

vij ≤ w ∀i ∈ F (61)

uj − vij ≤ cij ∀i ∈ F, j ∈ C (62)

uj ≥ 0 ∀j ∈ C (63)

vij ≥ 0 ∀i ∈ F, j ∈ C (64)

w ≥ 0 (65)

Thus, running the primal-dual approximation algorithm from the previous lecture yields the
integral solution to the primal (LPLR), i.e., the subset of I of open facilities and the mapping φ of

22

which facility serves which client. By (46) we have that∑
j∈C

cφ(j)j + 3
∑
i∈I

fi ≤ 3
∑
j∈C

uj (66)

∑
j∈C

cφ(j)j ≤ 3

∑
j∈C

uj −
∑
i∈I

fi

 (67)

= 3

∑
j∈C

uj − λ|I|

 (68)

Now, if k = |I|, we have a factor 3 approximation:

∑
j∈C

cφ(j)j ≤ 3

∑
j∈C

uj − λk

 (69)

≤ 3 OPTLPkM (70)

However, this only works for k = |I|. If |I| < k, the inequality in equation (69) becomes invalid.
If |I| > k, it is not clear how to convert it to a feasible solution to LPkM.

7 Second attempt

We observe that the value of λ is under our control. Also, notice that for λ = 0 we have I = F , and
for λ = |C|cmax we have |I| = 1. Thus, we can do a binary search on λ in the interval [0, |C|cmax]
to arrive at the case where |I| = k. Unfortunately, there is no guarantee that there exists a value
of λ such that |I| = k.

Instead, we find (λ1, λ2) with their corresponding solution (I1, I2) and (φ1, φ2), and their
corresponding primal and dual variable (x(1), x(2)), (y(1), y(2)), (u(1), u(2)), and (v(1), v(2)) such that:

λ1 ≤ λ2 ≤ λ1 + δ (71)

|I1| > k > |I2| (72)∑
j∈C

cφ1(j)j ≤ 3

∑
j∈C

u
(1)
j − λ1|I1|

 (73)

∑
j∈C

cφ2(j)j ≤ 3

∑
j∈C

u
(2)
j − λ2|I2|

 (74)

By (72) we can write k as a convex combination of |I1| and |I2|: k = α1|I1| + α2|I2| where
α1, α2 ≥ 0 and α1 + α2 = 1. Let (x, y, u, v) = α1(x(1), y(1), u(1), v(1)) + α2(x(2), y(2), u(2), v(2)).

Claim 6. (u, v) expanded with w = λ2 is a feasible dual solution for LPkM.

Proof. This follows directly from the convexity of the feasible region, and the fact that λ2 ≥ α1λ1 + α2λ2.

23

Lemma 5. α1
∑

j∈C cφ1(j)j + α2
∑

j∈C cφ2(j)j ≤ 3 OPTLPkM + 3δ|F |

Proof.

∑
j∈C

cφ1(j)j ≤ 3

∑
j∈C

u
(1)
j − λ1|I1|


= 3

∑
j∈C

u
(1)
j − (λ1 + λ2 − λ2)|I1|


= 3

∑
j∈C

u
(1)
j − λ2|I1|

+ 3(λ2 − λ1)|I1|

= 3

∑
j∈C

u
(1)
j − λ2|I1|

+ 3δ|I1|

On taking the convex combination of this inequality and inequality (74), we get:

α1

∑
j∈C

cφ1(j)j + α2

∑
j∈C

cφ2(j)j ≤ 3

∑
j∈C

uj − λ2k

+ 3α1δ|I1|

≤ 3 OPTLPkM + 3δ|F |

Since we get a fractional solution, we use randomized rounding to obtain I with |I| = k and then
connect each j with a cheapest connection to I. To simplify notation, let k1 = |I1| and k2 = |I2|.
Note that α1 = (k − k2)/(k1 − k2) and α2 = (k1 − k)/(k1 − k2).

Here is how we perform the randomized rounding to obtain I with |I| = k. We first construct
I ′1 and I ′2 as follows. Let P (for ”projection”) contain the closest element in I1 for each element of
I2, and arbitrary additional elements of I1 so as to obtain a subset P of I1 of size exactly k2. Let
R (for ”random”) denote a random subset of k− k2 elements from I1 − P . We set I ′1 = P ∪R and
I ′2 = I2 ∪R.

To create I, we flip a biased coin such that with probability α1 we pick I ′1 as I, and with
probability α2 we pick I ′2 as I. We then serve j from the cheapest facility in I.

Claim 7. Consider a fixed client j in C, and let c denote the service cost for j under the ran-
domized construction of I, c1 the service cost under I1, and c2 the service cost under I2. Then
E[c] ≤ (1 + max(α1, α2))(α1c1 + α2c2).

Proof. Recall that we pick I = I ′1 with probability α1, and I = I ′2 with probability α2. In each
case, we serve j from the cheapest i in I. If we pick I = I ′2, we can always serve j from φ2(j). If
we pick I = I ′1, then we may not be able to serve j from φ1(j) but we certainly can if φ1(j) is in P .
Thus, if φ1(j) is in P , then E[c] ≤ α1c1 + α2c2. This is because with probability α1 we set I = I ′1
and we can serve j from φ1(j) at cost c1, and with probability α2 we set I = I ′2 and we can serve
j from φ2(j) at cost c2. In the sequel we only need to consider the situation where φ1(j) is not in
P . We distinguish between three cases.

24

Case 1: φ1(j) is in R. This happens with probability exactly (k−k2)/(k1−k2) = α1 (convince yourself
of this fact.) Since R is always part of I, we can serve j from φ1(j) at cost c1. Thus, in this
case c ≤ c1.

Case 2: φ1(j) is not in R and we pick I = I ′2. This happens with probability (1− α1)α2 = (α2)2. In
this case we can serve j from φ2(j) at most c2, so c ≤ c2.

Case 3: φ1(j) is not in R and we pick I = I ′1. This happens with probability (1− α1)α1 = α1α2. In
this case we can serve j from the facility f in I1 closest to φ2(j) at cost cfj . By the triangle
inequality, cfj ≤ cfφ2(j) + cφ2(j)j . We know that cfφ2(j) ≤ cφ1(j)φ2(j) (by the choice of f), and
that cφ1(j)φ2(j) ≤ cφ1(j)j + cφ2(j)j (by the triangle inequality). Using the definition of c1 and
c2, we conclude that in this case c ≤ c1 + 2c2.

Combining the three cases we have that:

E[c] ≤ α1c1 + (α2)2c2 + α1α2(c1 + 2c2)

= α1(1 + α2)c1 + α2(1 + α1)c2

≤ (1 + max(α1, α2))(α1c1 + α2c2)

Based on the claim 7, the expectation of total cost is given by:

E[Total Cost] ≤ (1 + max(α1, α2))(3 OPT + δ|F |)

We know max(α1, α2) ≤ 1− 1
|F | , so:

E[Total Cost] ≤
(

2− 1

|F |

)
(3 OPT + 3δ|F |)

= 6 OPT + 6|F |δ − 3 OPT

|F |
− 3δ

≤ 6 OPT + 6|F |δ − 3 OPT

|F |

= 6 OPT + 3

(
2|F |δ − OPT

|F |

)
Thus, to arrive at factor 6 approximation algorithm, we need to pick δ such that:

2|F |δ − OPT

|F |
≤ 0

δ ≤ OPT

2|F |2

However, we know that OPT ≥ cmin ≥ 0. Thus, we pick:

δ =
cmin
2|F |2

The number of steps in the binary search is determined by δ, since the binary search reduces
the interval of search [0, |C|cmax] by half every iteration until the interval size reaches δ. Thus, the

number of iteration in the binary search is at most log2

(
|C|cmax

δ

)
.

This way we arrive at a factor-6 polynomial time approximation algorithm.

25

