
CS 787: Advanced Algorithms

NP-Hardness

Instructor: Dieter van Melkebeek

We review the concept of polynomial-time reductions, define various classes of problems includ-
ing NP-complete, and show that 3-SAT and Vertex Cover are NP-complete. We also briefly discuss
tackling NP-hard optimization problems, in particular via approximation algorithms.

1 Polynomial-Time Reductions

We start by defining types of problem, and then move on to defining the polynomial-time reductions.

1.1 Type of problems

Definition 1 (Decision Problem). A decision problem is a question with a yes-or-no answer.

Example: The question of whether a Boolean formula has a satisfying assignment of variables,
or whether a given natural number is a prime number are examples of decision problems. Another
example of a decision problem is the decision version of vertex cover (VC) problem, which is the
question of whether there exists a set of at most k vertices in a given graph with all edges incident
on at least one vertex from the set. �

Definition 2 (Optimization Problem). An optimization problem finds an optimal solution among
all feasible solutions based on a objective.

Example: The problem of finding a minimum size set of vertices in a given graph with all edges
incident on at least one vertex of set is an example of optimization problem. This is the optimiza-
tion version of the vertex cover problem (also known as the minimum vertex cover). �

1.2 Reduction

Definition 3 (Polynomial-Time Reducible, ≤P ). Problem A is polynomial-time reducible to prob-
lem B (A ≤P B), if an arbitrary instance of problem A can be solved using a polynomial number
of computational step, plus a polynomial number of calls to an oracle that solves problem B.

This formulation has few important consequences. Suppose A is polynomial-time reducible to
B, and there exists an algorithm to solve B using polynomial number of computational step. By
the reduction, an algorithm to solve A will involve polynomial number of steps, plus polynomial
number of calls to the algorithm that solves B that runs in polynomial time. Thus, the algorithm
to solve A becomes a polynomial-time algorithm.

The contrapositive of the previous statement will help us in establishing the computation in-
tractability of some problem. The contrapositive states as follows: if A is polynomial-time reducible
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to B (A ≤P B) and A cannot be solved in polynomial time, then B cannot be solved in polynomial
time.

To illustrate this concept of polynomial time reduction, we will look at the decision and opti-
mization versions of the Vertex Cover problem. Given a graph G = (V,E), we say a set of vertices
S ⊆ V is a vertex cover if every edge e ∈ E has at least one end in S.

Let A be the optimization version of vertex cover problem (or minimum vertex cover), where
we need to find the smallest vertex cover.

Let B be the decision version of vertex cover problem, where we need answer the yes-or-no
question of whether there exists a vertex cover of size at most k in graph G.

We can trivially show that B ≤P A. We need to find the smallest vertex cover (A). If k ≥ the
size of smallest cover, then the answer to B is yes; otherwise, the answer is no.

To show A ≤P B, we start with k = 0 and increment it until we get a yes answer for the first
time. This way we obtain the size of the minimum vertex cover using B as a black-box. To find
an actual cover, we take each node out of the graph and run the algorithm for B on the resulting
graph to check if a vertex cover of size at most k−1 exists; if the algorithm returns true, the vertex
is part of the smallest vertex cover. Thus, we add the vertex to the set of nodes representing the
vertex cover.

2 Classes of Problems

We now proceed to formalize problems and algorithms. The input to a problem will be encoded as
a finite binary string x. The length of the string x is denoted as |x|. We define a decision problem T
with the set of strings on which the answer is “yes.” An algorithm A for a decision problem receives
an input string x and returns a “yes” or “no.” We say that A solves the problem T if it returns
the correct answer (“yes” or “no”) for all possible input strings.

We say an algorithm runs in polynomial time if there is an polynomial function p(·) so that the
algorithm terminates in at most O(p(|x|)) step for every input x.

Definition 4 (Class P). P is the set of all decision problems T for which there exists an algorithm
A that runs in polynomial time and solves T .

Now, we formalize the idea of verifying a solution to a problem efficiently. A “verifying”
algorithm for a problem T is different from an algorithm to solve the problem. To verify, the
“verifying” algorithm needs the input string x as well as an “certificate” string w that contains
evidence that x is a “yes” instance, where |w| ≤ p(|x|).

Definition 5 (Class NP). NP is the set of all decision problems for which there exists an efficient
verifier for the “yes” instances of the decision problem.

L ∈ NP ⇔ (∃ c > 0) (∃V ∈ P) (∀x) x ∈ L ⇔ (∃w ∈ {0, 1}|x|c) (x,w) ∈ V

In other words, there exists a polynomial time verifier V of the input string x and “certificate”
string w for each problem L in NP.

Example: For Vertex Cover problem, the set of vertices comprising the vertex cover is such a
“certificate.” �
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Observation: P ⊆ NP
If we can solve a problem efficiently (every problem in P), it directly follows that it has an efficient
verifier. We simply run the efficient algorithm to solve the problem to verify.
Conjecture: P 6= NP
There are problems in NP for which no efficient algorithm exists. The question of whether P = NP is
fundamental to the area of algorithms, and it is one of the most famous open problems in computer
science. It is generally believed that P 6= NP. A huge amount of effort has been put into coming
up with polynomial time algorithm for hard problems in NP resulting in failure. It is conceivable
that this failure is because these problems can not simply be solved in polynomial time.

Definition 6 (NP-hard). Problem A is NP-hard if and only if every problem B ∈ NP is polynomial-
time reducible to A (B ≤P A).

Definition 7 (NP-complete). Problem A is NP-complete if and only if A is NP-hard and A ∈ NP.

Note that by the definition of NP-hard, if A is polynomial-time reducible to B (A ≤P B) and
A is NP-hard, then B is also NP-hard. Similarly, by the definition of NP-complete and NP-hard, if
A is polynomial-time reducible to B (A ≤P B) and A is NP-complete, then B is also NP-complete.

3 3-SAT

Given: A 3-CNF formula φ on variables x1, . . . , xn.
Goal: Does there exist a satisfying assignment of variables x1, . . . , xn (i.e., φ evaluates to true)?

Theorem 1. 3-SAT is NP-complete.

Proof. 3-SAT is in NP, since given a satisfying assignment we can verify it in polynomial time. We
will prove that it is NP-complete by showing Circuit Satisfiability is polynomial-time reducible to
3-SAT assuming Circuit Satisfiability is already known to be NP-complete.

We need to show that we can solve an arbitrary instance of Circuit Satisfiability with a Boolean
circuit K by transforming it into an instance of 3-SAT such that satisfiability of K is same as the
satisfiability of the transformed 3-SAT instance.

We associate a variable zv with each node (or gate) v in the circuit K to encode the Boolean
value that the circuit will hold at that node. We then define clauses of 3-SAT problem which
corresponds to circuit K. The clauses added depend on the type of gates in the circuit:

¬

zu

zv

(a) A NOT gate.

∧

zu zw

zv

(b) An AND gate.

∨

zu zw

zv

(c) An OR gate.

Figure 1: Node (or gate) scenarios in the circuit.
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• If node v is a NOT gate (labeled ¬) with an edge entering from node u, we need to have
zv = z̄u. Thus, we add clauses (zu ∨ zv), and (z̄u ∨ z̄v).

• If node v is an AND gate (labeled ∧) with edges entering from nodes u and w, we need to
have zv = zu ∧ zw. Thus, we add clauses (z̄v ∨ zu), (z̄v ∨ zw), and (zv ∨ z̄u ∨ z̄w).

• If node v is an OR gate (labeled ∨) with edges entering from nodes u and w, we need to have
zv = zu ∨ zw. Thus, we add clause (zv ∨ z̄u), (zv ∨ z̄w), and (z̄v ∨ zu ∨ zw).

Thus, this polynomial time construction can be used to solve the Circuit Satisfiability problem
of an arbitrary circuit using 3-SAT as a “black-box.”

4 Vertex Cover

Given: A graph G = (V,E), and an integer k.
Goal: Does there exist an vertex cover of size at most k?

Theorem 2. Vertex Cover (VC) is NP-complete.

Proof. VC is in NP, since given a vertex cover (S) of size at most k we can verify if it indeed covers
all edges (i.e., every edge has one end in S).

We already know that 3-SAT is NP-complete (and hence NP-hard), so we only need to show
that 3-SAT is polynomial-time reducible to VC, i.e., 3-SAT ≤PVC.

We need to transform an arbitrary instance of 3-SAT into an instance of VC such that the
yes-or-no answer to VC is the same for 3-SAT. We do this transformation using gadgets for each
variable and each clause.

• For each variable x, we create a gadget with two vertices representing x and x̄ with an edge
in G.

• For each clause c = `1 ∨ `2 ∨ `3, we create a gadget with three vertices representing `1, `2,
and `3 with an edge connecting every pair of the three vertices.

• Each vertex in each clause is then connected to the corresponding variable or its negation in
variable gadgets.

XX

(a) A variable gadget.

l
1

l
2

l
3

(b) A clause gadget.

Figure 2: Gadgets introduced in 3-SAT.

Notice that V C(G) (the size of the minimum vertex cover) is at least n + 2m, where n is the
number of vertices, and m is the number of clauses, since to cover the only edge in each variable
gadget at least one vertex in the gadget has to be in the vertex cover, and to cover the three edges
in each clause gadget at least two vertices has to be in the vertex cover. The following claim will
help us solve the given instance of 3-SAT problem using the VC problem of the constructed graph.
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Figure 3: An example for connected gadgets

Claim 1. Given instance of 3-SAT is satisfiable if and only if the size of minimum vertex cover of
the constructed graph is exactly n+ 2m.

V C(G) = n+ 2m ⇐⇒ φ ∈ 3-SAT

Proof. To prove the forward direction (i.e., if V C(G) is n+2m then φ is satisfiable), we assign truth
value to the vertices of variable gadgets in the VC. For example, if vertex xi is in VC, we assign xi
true, and if vertex x̄j is in VC, we assign x̄j true (or xj false). Note that there will be exactly one
vertex from each variable gadget in the VC, since if none are in VC, it is not a vertex cover, and if
both are in the VC, then V C(G) > n+ 2m. Each clause has two vertices in VC. Thus, they only
cover two of the three edges connecting vertices in that clause to variable gadgets. However, since
VC must cover all edges, the remaining edge is covered by one vertex from variable gadget, which
is assigned true. Thus, every clause has a vertex corresponding to a true valued vertex in variable
gadgets. φ has a satisfiable assignment.

To prove the reverse direction (i.e., if φ is satisfiable then V C(G) is n+ 2m), we construct VC
of size n+ 2m was follows:

• In the variable gadgets, we add vertices assigned true in the satisfiable assignment to VC.
For example, if xi is assigned true, we add vertex xi to VC, and if x̄j is assigned true, we add
vertex x̄j to VC.

• In each clause, we add two vertices except the first vertex whose corresponding vertex in the
variable gadget is assigned true. For example, in a clause (xi ∨ xj ∨ xk) where xj is the first
variable true, we add clause vertices xi and xk to VC.

Since one vertex in each variable gadget is in VC, the only edge in that is covered. Since all the
clauses are satisfied, we know there is at least one edge entering the clause gadget from a vertex
in VC. Thus, at least one edge entering clause gadget is covered by variable gadget vertices. By
excluding the clause vertex whose corresponding variable vertex is assigned true, when including
two vertices from each clause in VC, we cover the two remaining edges entering each clause gadget
from variable gadgets. By choosing any two vertices in each clause, we also cover the three edges
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between the vertices in the clause gadget. Thus, vertices selected in VC cover all edges in the
graph. Moreover, by choosing one vertex from each variable gadget and two vertices from each
clause gadget, VC is of size n+ 2m.

Using the above claim, we can solve an arbitrary instance of 3-SAT problem using VC as a
“black-box.” The graph construction takes only polynomial number of step, and only one call to
VC is made in the process. Thus, 3-SAT ≤PVC.

5 Tackling NP-hard problems

What if you need to solve an instance of an NP-hard problem? There are several recourses.

• Exploiting additional structure of the instance.

Several NP-complete problems are solvable in polynomial time for interesting subclasses of
problems. For example, a simple greedy approach solves the Vertex Cover problem on trees
in polynomial time.

More generally, several NP-complete problems have a natural parameter k (other than the
input size) which has a significant impact on the complexity and only takes on small values
in practice. For example, in many settings we are only interested in finding a vertex cover
of size at most k. Exhaustively trying all subsets of size k yields an algorithm that runs in
polynomial time for any fixed k, namely roughly nk, but this is no good even for relatively
small values of k, e.g., k = 10. However, there exists an algorithm that runs in time 2k · n,
which is feasible for k = 10. The subarea of parameterized complexity studies which problems
allow such algorithms. Time permitting, we will cover some of the results at the end of the
course.

• Improved exponential-time algorithms.

Assuming P 6= NP there is no polynomial-time algorithm for an NP-complete problem, but
for several NP-complete problems better exponential-time algorithms are known than brute
force search. Time permitting, we may discuss some of those algorithms near the end of the
course.

• Approximation algorithms.

Although we may not be able to compute the optimum in polynomial time, we may be able
to efficiently find a feasible solution that is within a small factor from optimal. This is the
main focus of the rest of the course, to which we give a brief introduction next.

• Heuristics.

Heuristics are generally used as a last resort in trying to solve NP-hard problems because
they do not guarantee an optimal solution or how close to optimal the solution is. They are
most often inspired by physical processes. A large group of heuristics can be cast as local
search. The following are the high level steps that are generally followed when applying a
heuristic: (1) Start from some valid solution. (2) Create a neighborhood structure for the
valid solution. (3) Use a criterion to jump to a neighbor. (4) Repeat until (un)happy and
return the best solution found.

We will not cover heuristic in this course.
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We first define what we mean by an approximation algorithm for an optimization problem. We
use the notation OPT (x) to denote the optimum value of the objective function on input x.

Definition 8 (Approximation Algorithm). We say that an algorithm is an approximation algorithm
with factor ρ(n) for an optimization problem if the algorithm runs in polynomial time and, on
input x, produces a feasible solution with objective value at least ρ(|x|) ·OPT (x) for maximization
problems, and at most ρ(|x|) ·OPT (x) for minimization problems, or correctly reports that there is
no feasible solution.

Note that, even though OPT (x) may not be computable in polynomial time, approximation
algorithms nevertheless make guarantees relative to OPT (x). The general strategy to do so is
to find a bound for OPT (x) (an upper bound for maximixation problems and a lower bound for
minimization problems) and relate the quality of the constructed feasible solution to this bound.

The best one could hope for NP-hard optimization problems (assuming P 6= NP) is that every
constant factor ρ 6= 1 can be realized.

Definition 9 (PTAS). A Polynomial Time Approximation Scheme (PTAS for short) is collection
of algorithms that realize any ρ = 1 + ε for minimization problems (ρ = 1 − ε for maximization
problems) for constant ε > 0, and for any fixed ε, the running time is poly(|x|).

In fact, one could hope for even more, namely that the dependency of the running time on 1/ε
is modest.

Definition 10 (FPTAS). A Fully Polynomial Time Approximation Scheme (FPTAS for short) is
a PTAS with running time poly(|x|, 1ε ) for any ε > 0.

Although all NP-complete optimization problems are equivalent to each other (up to polynomial
reductions) in terms of finding the exact optimum, they behave very differently in terms of efficient
approximability. The table below lists the status of the best approximation factor rho that has
been achieved for various problems that we will discuss in the sequel of the course, as well as bounds
on the best achievable factor under certain complexity theoretic assumptions.

Asymptotically Lower bound for ρ Hypothesis
best ρ known

Knapsack Problem FPTAS – –

Euclidean Travelling PTAS no FPTAS P 6= NP
Salesman Problem

Vertex Cover 2 1.360 P 6= NP
Problem 2− ε unique game conjecture

Set Cover Problem lnn Ω(log n) P 6= NP

(1− o(1)) lnn NP * DTime(nO(log logn))

Clique Problem log2 n
n

1
n1−ε P 6= NP

Travelling Salesman exponential no poly time computable P 6= NP
factor of number of vertices

In particular, note that Vertex Cover and Clique behave very differently, in spite of the following
simple connection.
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Claim 2. S is a VC for graph G iff S is a clique in G.

Proof. Suppose that G has a vertex cover S. Then for all u, v ∈ V , if (u, v) ∈ E, then u ∈ S or
v ∈ S or both. The contrapositive of this implication is that for all u, v ∈ V , if u /∈ S and v /∈ S,
then (u, v) ∈ E. In other words, S = V − S is a clique in G.

Conversely, suppose G has a clique T , let (u, v) be any edge in E. Then (u, v) /∈ E, which implies
that at least one of u or v does not belong to T , since every pair of vertices in T is connected by an
edge of E. Equivalently, at least one of u or v is in V − T , which means that edge (u, v) is covered
by V − T . Since (u, v) was chosen arbitrarily from E, every edge of E is covered by a vertex in
V − T . Hence, the set T = V − T forms a vertex cover for G.

The explanation for this paradox is as follows: Suppose we have a vertex cover S such that
|S| 6 2OPTV C(G). By the above fact, OPTclique(G) = n − OPTV C(G). If we try to get an
approximation for the clique problem by complementing S, we end up with |S| = n − |S| >
n− 2 ·OPTV C(G) = 2 ·OPTclique(G)− n, which we cannot lower bound by ρ(n) ·OPTclique(G) for
any ρ(n) substantially smaller than n.

In the rest of the course we will use various techniques to develop approximation algorithms
for NP-hard optimization problems: greed, divide-and-conquer, dynamic programming, linear pro-
gramming, and semidefinite programming.
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