
CS 787: Advanced Algorithms

A Primer on Discrete Probability

Instructor: Dieter van Melkebeek

These notes provide a brief review of certain concepts in probability, random variables, expectation,
and concentration. These concepts are important for the subsequent discussion of randomized
algorithms.

1 Probability Theory over Countable Spaces

Definition 1 (Countable Probability Space). A Countable Probability Space is composed of the
tuple (Ω,Pr).

• Countable Sample Space Ω
The sample space is a set of outcomes for a particular experiment. “Countable” means that
either the size of Ω is finite or there is a one-to-one and onto correspondence between the the
elements of Ω and the set of Natural numbers.

• Probability measure Pr : Ω 7→ [0, 1] such that
∑

ω∈Ω

Pr(ω) = 1

Pr maps every element of Ω to a real number in the interval [0,1], such that the sum of the
probabilities of all the elements of Ω is 1.

Definition 2 (Event). An Event A is a subset of Ω, and Pr(A) =
∑

ω∈A

Pr(ω)

Example:
Consider the Sample Space Ω = { All the cards in a standard deck }
with, Pr(ω) = 1

52 for each ω ∈ Ω (this is a uniform distribution over the set of all cards).
Some possible events and their probabilities:

• A1 = {The set of all Aces in the deck}
Pr(A1) = 4(1

52) =
1
13

• A2 = { The set of all the Hearts in the deck }
Pr(A2) = 13(1

52) =
1
4

Now, notice thatA1∩A2 = {The event that A1 and A2 occur simultaneously} = {The Ace of Hearts}
and Pr(A1 ∩A2) =

1
52 = Pr(A1) · Pr(A2). ⊠

Definition 3 (Independent Events). Events A1 and A2 are said to be independent iff Pr(A1∩A2) =
Pr(A1) · Pr(A2).

In general, k events, A1, A2, . . . , Ak are mutually independent if (∀I ⊆ [k]) Pr(
⋂

i∈I Ai) =
∏

i∈I Pr(Ai)

1

In simple words, two or more events are said to be independent, if the outcomes of one set of events
do not affect the outcome of any of the other events.

Definition 4 (Pairwise Independence). Events A1, A2, . . . , Ak are pairwise independent if every
pair of them is independent.

Example: Pick 3 bits such that their XOR is equal to zero. Then, they are pairwise independent
since any two of them are independent. But they are not mutually independent, since the knowl-
edge of any two of them fixes the other. ⊠

Example:
Ω = { Outcome of a Die }, A1 = { outcome is even }, and A2 = { the opposite side is odd }

Here, A1 and A2 are not independent, since the knowledge of the outcome of either of the two fixes
the outcome of the other (opposite sides of a die always add up to 7). ⊠

Definition 5 (Conditional Probability). Given two events A and B, the conditional probability

of A given B is defined as

Pr(A | B) =
Pr(A ∩B)

Pr(B)
(1)

where Pr(B) > 0.

Intuitively, the conditional probability gives a measure of dependence of one event on the other.

More specifically, the conditional probability Pr(A | B) is the probability that event A occurs
given the fact that B occurred. That is, the probability of A given B is the ratio of elements in B
that are also in A. This ratio is illustrated in Figure 1 as the number of elements in the horizontal
shaded region divided by the elements in the circle denoting B’s region.

Furthermore, from Equation 1, we see that

Pr(A ∩B) = Pr(A | B) · Pr(B) (2)

For example, given the standard 6-sided die from a previous example, we know that Pr(A1) =
1
2 .

However, Pr(A1|A2) = 1 due to the fact that opposite sides of dice add up to 7 and thus, knowing
the outcome A2 yields a different probability of A1 (That is, A1 is completely known).

We generalize Equation 2 to probabilities of the intersection of multiple events:

Pr(Ak∩Ak−1∩· · ·∩A1) = Pr(Ak | A1∩A2∩· · ·∩Ak−1) · · ·Pr(A3 | A1∩A2)·Pr(A2 | A1)·Pr(A1) (3)

This result is known as the chain rule.

2

BA

Figure 1: Conditional Probability Pr(A | B)

2 Random variables

Definition 6 (Random Variable). A random variable is any function f : Ω 7→ R, where Ω is the
sample space.

Example: The function that determines the running time of a randomized algorithm from the
outcomes of the “coin flips” made during its execution is a random variable. ⊠

Example: An indicator variable χA for an event A is defined as

χA(ω) =

{

1 if ω ∈ A
0 otherwise

The error indicator, χErr, associated with the event “the algorithm produced erroneous output”,
is a random variable. ⊠

To get an idea of the behavior of a random variable f we would like to know what its expected value
is.

Definition 7 (Expected Value). The expected value E[f] of a random variable f is defined as

E[f] =
∑

ω∈Ω

f(ω) Pr(ω) (4)

Example: E[χA] = Pr(A) ⊠

Example: Consider an experiment with probability p of success. Perform the experiment until it is

3

successful.

E[number of trials until first success] =
∞
∑

k=1

k(1− p)k−1p

= p
d

dp

(

−
∞
∑

k=0

(1− p)k

)

= p
d

dp

(

−
1

p

)

=
1

p

The first line of this evaluation states that for the kth trial, the probability of success is p and the
probability that we have seen failures in the previous k − 1 iterations is (1 − p)k−1. Since we are
calculating the expected number of trials, we multiply the probability of this event, p(1− p)k−1 by
the trials seen so far, k.

⊠

Example: One application of this last example is the search for an m-digit prime number. The
prime number theorem tells us that the probability that a random number of m digits is prime
is asymptotically equal to 1

m ln 2 . Because we can check whether a number is prime in polynomial
time, we can just pick an m digit number at random and run the primality test. By the previous

example, the expected number of runs until we find a prime is Θ
(

1
1

m

)

= Θ(m). ⊠

Example: Suppose we throw a die and let random variable X1 be the number on the top of the
die, and let random variable X2 be the number on the bottom of the die. Clearly E[X1] =
7/2 = E[X2]. Now notice that E[X1 + X2] = 7 = E[X1] + E[X2]. In fact, in general the
equality E[X1 + X2] = E[X1] + E[X2] holds for any random variables X1, X2. Can we also use
E[X1 · X2] = E[X1] · E[X2]? In general this is not the case, for our example a quick calculation
gives E[X1 ·X2] =

1·6+2·5+3·4+4·3+5·2+6·1
6 = 28/3 and E[X1] · E[X2] = 49/4. The reason for this is

because the two variables are not independent. Let us now look into some properties for random
independent variables. ⊠

Definition 8 (Independent Random Variables). Let X1, X2, . . . , Xn be random variables, we define
them to be mutually independent if for all x1, x2, . . . , xn the events X1 = x1, X2 = x2, . . . , Xn = xn
are mutually independent. Pairwise independence of random variables is defined in a similar way.

We will now derive some properties which will be used often in calculations.

Theorem 1. Let X1, X2, . . . , Xn be mutually independent random variables. then

E

[

n
∏

i=1

Xi

]

=
n
∏

i=1

E[Xi].

4

Proof. For mutually independent random variables we can use the property that Pr[X1 = x1, X2 =
x2, . . . , Xn = xn] = Pr[X1 = x1] ·Pr[X2 = x2] · . . . ·Pr[Xn = xn]. Using simple algebra we can then
derive

E

[

n
∏

i=1

Xi

]

=
∑

x1,x2,...,xn

(

n
∏

i=1

xi · Pr[X1 = x1, X2 = x2, . . . , Xn = xn]

)

=
∑

x1,x2,...,xn

(

n
∏

i=1

xi · Pr[X1 = x1] · Pr[X2 = x2] · . . . · Pr[Xn = xn]

)

=
n
∏

i=1

(

∑

xi

xi · Pr[Xi = xi]

)

=

n
∏

i=1

E[Xi].

The expectation summarizes information on our probability distribution in one real. Sometimes the
information contained in the expected value might not be sufficient. Suppose we have an algorithm
which runs for 10 seconds half the time and 90 seconds the other half. A similar algorithm runs
exactly 50 seconds every time. The expected running time for both algorithms is 50 seconds but
clearly individual runs of the first algorithm deviate more from this expected value. We therefore
define a new quantity called the variance which gives a good indication of the spread of a random
variable around the expected value.

Definition 9 (Variance). The variance σ2 of a random variable X is defined as

σ2[X] = E[(X − E[X])2]. (5)

It is easy to see that

σ2[X] = E[(X − E[X])2]

= E[X2 − 2XE[X] + E[X]2]

= E[X]2 − 2E[X]E[X] + E[X]2 (By linearity of expectation.)

= E[X2]− E[X]2.

The right hand side can be seen to be nonnegative. This result is also know as the Cauchy-Schwarz
inequality. Recall that the expected value of a random variable is additive. The variance is additive,
under the restriction that our random variables are pairwise independent:

Theorem 2. Let X1, X2, . . . , Xn be pairwise independent random variables. Then,

σ2
[

∑

Xi

]

=
∑

σ2[Xi].

5

Proof. We will give the proof for two pairwise independent variables.

σ2[X1 +X2] = E[((X1 +X2)− (E[X1] + E[X2]))
2]

= E[((X1 − E[X1]) + (X2 − E[X2]))
2]

= E[((X1 − E[X1])
2 + (X2 − E[X2])

2 − 2(X1 − E[X1])(X2 − E[X2])]

= σ2[X1] + σ2[X2].

Exercise 1. Extend the proof above for an arbitrary number of variables.

3 Concentration

When analyzing randomized algorithms we often choose a certain random variable and compute
its expected value. What we want to argue then is that within certain probability bounds, the
algorithm will stay close to this expected value. The tail inequalities given in this section state that
the random variable will be concentrated around its expected value. This gives us the guarantee
that the probability that our algorithm behaves very badly is within certain tight bounds.

3.1 Markov’s inequality

This inequality gives probability bounds in terms of the expected value.

Theorem 3 (Markov’s Inequality). For any random variable X ≥ 0, and for all real t > 0,

Pr[X ≥ t] ≤
E[X]

t
. (6)

Proof.

E[X] =
∑

x<t

x · Pr(X = x) +
∑

x≥t

x · Pr[X = x]

≥
∑

x≥t

x · Pr[X = x]

≥ t
∑

x≥t

Pr[X = x]

= t · Pr[X ≥ t].

Rearranging the terms, we get

Pr[X ≥ t] ≤
E[X]

t
.

Note that the inequality is only informative when t ≥ E[X].
Example: Suppose we take as our random variable X the running time of our algorithm, Markov’s
inequality would state that the probability that our algorithm runs for twice the expected time is
at least 50%. Thus, Markov’s Inequality is a tool for proving bounds of concentration. ⊠

6

Markov’s inequality has both an advantage and a disadvantage. One advantage is that since
the proof assumes only a nonnegative random variable, the result has great applicability. However,
this advantage comes with a less powerful bounding rate. We will see that the next two inequalities
give tighter bounds.

3.2 Chebyshev’s inequality

This inequality gives bounds in terms of the variance and is easily derived from Markov’s inequality.

Theorem 4 (Chebyshev’s Inequality). For any random variable X, and for all real t > 0,

Pr [|X − E[X]| ≥ t] ≤
σ2[X]

t2
. (7)

Proof.

Pr [|X − E[X]| ≥ t] = Pr[(X − E[X])2 ≥ t2]

≤
E[(X − E[X])2]

t2

=
σ2[X]

t2
.

The proof uses Markov’s inequality on the random variable (X − E[X])2, which clearly satisfies
the nonnegativity constraint. We will now derive a result using Chebyshev’s inequality which fre-
quently occurs in algorithm analysis.

Example: We have an experiment which we can run several times over again. Suppose we would
like to model some property with an indicator variable. We assign each run a different random
indicator variable called Xi for i = 1...n with E[Xi] = p. If the runs are pairwise independent then
so are the random variables Xi. Applying Chebyshev’s inequality we find:

Pr

[
∣

∣

∣

∣

1

n

∑

Xi − p

∣

∣

∣

∣

≥ a

]

≤
σ2
[

1
n

∑

Xi

]

a2

=

n
∑

i=1
σ2[Xi]

n2a2

=

n
∑

i=1
np(1− p)

n2a2

≤
1

na2

The probability that the average of the random variables is off at least a from the expectation is
inversely proportional to the number of runs n. ⊠

7

For some applications even this bound is not tight enough. We therefore state another tail inequality
that gives even tighter bounds: Chernoff’s inequality.

3.3 Chernoff’s inequality

Chernoff’s inequality bounds the probability of deviation with an exponentially decreasing function.

Theorem 5 (Chernoff’s Inequality). If X1, X2, . . . , Xn are mutually independent indicator vari-
ables, then for any δ ≥ 0

Pr

[

n
∑

i=1

Xi ≥ (1 + δ)µ

]

≤

(

eδ

(1 + δ)(1+δ)

)µ

, where µ = E

[

n
∑

i=1

Xi

]

=
n
∑

i=1

E [Xi] . (8)

Proof. The left-hand side of Equation 8 can be rewritten as

Pr
[

et
∑

Xi ≥ et(1+δ)µ
]

, for any t > 0. (9)

Since et
∑

Xi ≥ 0 and et(1+δ)µ > 0, we can apply Markov’s inequality to get

Pr
[

et
∑

Xi ≥ et(1+δ)µ
]

≤
E
[

et
∑

Xi

]

et(1+δ)µ
, for any t > 0. (10)

The numerator of the right-hand side of Equation 10 can be simplified as

E
[

et
∑

Xi

]

= E
[

∏

etXi

]

. (11)

Since Xi’s are mutually independent, so are tXi’s and etXi ’s for t > 0:

E
[

∏

etXi

]

=
∏

E
[

etXi

]

. (12)

From Equation 11 and 12,

E
[

et
∑

Xi

]

=
∏

E
[

etXi

]

. (13)

Let E[Xi] = pi. Then E
[

etXi

]

= (1− pi) · 1 + pi · e
t; therefore,

∏

E
[

etXi

]

=
∏

(

(1− pi) · 1 + pi · e
t
)

=
∏

(

1 + (et − 1)pi
)

≤
∏

e(e
t−1)pi , since 1 + x ≤ ex

= e(e
t−1)

∑
pi

= e(e
t−1)µ, since µ =

∑

E[Xi] =
∑

pi.

(14)

8

Using Equations 13 and 14, Equation 10 simplifies as

Pr
[

et
∑

Xi ≥ et(1+δ)µ
]

≤ e((e
t−1)−t(1+δ))µ, for any t > 0. (15)

The right-hand side of Equation 15 is minimum when
(

(et − 1)− (1 + δ)
)

is minimum. Choosing
t to minimize this expression,

d

dt

(

et − 1− t(1 + δ)
)

= 0

et − (1 + δ) = 0

t = ln(1 + δ), which is > 0. (16)

Substituting this value of t in Equation 16 and from 9 we get,

Pr

[

n
∑

i=1

Xi ≥ (1 + δ)µ

]

≤ e(δ−(1+δ) ln(1+δ))µ

=

(

eδ

(1 + δ)1+δ

)µ

.

Note: The term
(

eδ

(1+δ)1+δ

)

in Chernoff’s inequality is < 1, because had we chosen the value of

t = 0 in step 16 of the proof, the term evaluates to 1, but since we chose a t that further minimizes
the term, the value should be < 1.
Example: Given mutually independent random variables X1, X2, . . . , Xn with E[Xi] = p,

Pr

[

1

n

∑

Xi ≥ (1 + δ)p

]

≤

((

eδ

(1 + δ)(1+δ)

)p)n

= cn where c is a constant, c < 1.

⊠

For now we want to note several things. First of all, Chernoff’s inequality exists in many different
variants. We have stated the theorem using indicator variables but you could derive a similar
inequality for more general random variables. There also exists an expression bounding

∑

Xi from
the other side of µ.

Theorem 6. Let X1, X2, . . . , Xn be mutually independent random indicator variables, for any
δ ≤ 1, with µ =

∑

E[Xi],

Pr
[

∑

Xi < (1− δ)µ
]

≤ e−
δ

2
µ.

3.4 Balls and bins

As an application, consider the process of throwing n balls into m bins uniformly at random. This
process models several settings, including chained hashing and distributed load balancing. In the

9

rest of this section we will use the latter terminology, but everything we say also applies to chained
hashind and, more generally, to balls and bins.

It is often possible to analyze random variables related to balls and bins from first principles.
Instead, we employ the Chernoff bound as an illustration of its applicability. The application can
be seen as a first example of a randomized algorithm, namely for distributed load balancing.

Given: n jobs and m processors.
Goal: To distribute the jobs over the processors such that each processor gets about the same
number of jobs.

The solution is straight forward: assign roughly n
m

jobs to every processor. This can be done
by going through the processors and assigning a job to each and cycling back till all the jobs have
been distributed. However, we introduce the constraint that the decision for assigning each job
has to be made locally; i.e., when making the decision to assign a job, we do not know what the
current distribution of jobs is. With this constraint, we may not be able to achieve the ideal load of
n
m

on every processor. The best we know to do in this setting is to choose for each job a processor
uniformly at random. This is exactly balls and bins.

We would like to analyze how close we get to the ideal solution. One question we can ask is,
what is the probability that a processor gets a relative overload of more than δ?

Analysis

Let Xij = χ](ith job goes to the jth processor)], where χ denotes the indicator variable of a certain
event. The Xij ’s are not mutually independent because Xik = 1 implies Xil = 0 for all k 6= l.
However, for a fixed j, the Xij ’s are mutually independent for all i. Let Yj denote the load on
processor j; then

Yj =
n
∑

i=1

Xij

E[Yj] =
n
∑

i=1

E[Xij] =
n
∑

i=1

1

m
=

n

m
,

which shows that the expected load on each processor matches the ideal solution. Nonetheless,
we have yet to prove any bound on concentration around this “good” expected value. We use
Chernoff’s inequality:

Pr
[

Yj ≥ (1 + δ)
n

m

]

≤

(

eδ

(1 + δ)1+δ

)

n

m

. (17)

The above bound is for the probability of overload on one processor. The bound on the probability
that any processor overloads is bounded by the sum of the probability of overloading for each
processor. This is called the union bound, and is a useful when you have to take into account the

10

error due to various factors when the factors are not independent.

Pr
[

(∃j)
(

Yj ≥ (1 + δ)
n

m

)]

≤
m
∑

j=1

Pr
(

Yj ≥ (1 + δ)
n

m

)

≤
m
∑

j=1

(

eδ

(1 + δ)1+δ

)

n

m

= m

(

eδ

(1 + δ)1+δ

)

n

m

. (18)

We would like the above probability to be ≪ 1. If we fix one of the parameters, then we can get a
relation between the other two parameters in order to make the probability ≪ 1.

1. For a fixed δ > 0,
(

eδ

(1+δ)1+δ

)

is a constant, say c. And we also know that, c < 1. Therefore,

mc
n

m ≪ 1

c
n

m ≪
1

m
n

m
log c ≪ log

1

m

n log
1

c
≫ m logm

n = Ω(m logm). (19)

Therefore, we can guarantee that with high probability no processor gets a relative overload
of δ or more if the number of jobs is at least a logarithmic factor larger than the number of
processors.

2. If n = Θ(m), then it can be shown that

δ = O

(

logn

log logn

)

. (20)

The proof is left as an exercise. In terms of chained hashing with constant occupancy rate,
this means that with high probability the maximum chain length is O(logn

log logn).

11

