
CS 880: Advanced Complexity Theory 2/13/2008

Lecture 9: Learning DNFs

Instructor: Dieter van Melkebeek Scribe: Matt Anderson

The previous two lectures dealt with learning concepts with respect to the uniform distribution
using harmonic analysis. The idea has been to leverage harmonic analysis to learn concepts whose
Fourier coefficients are concentrated on a small part of the spectrum. We have considered two
different situations regarding the set of large Fourier coefficients S:

• If S is known we can learn the concept using random samples.

• If S is unknown but bounded (S ≤ M) we can learn the concept using membership queries.

We have applied the above approaches to learning decision trees. Now we will apply them to DNFs
and more generally to constant depth-d circuits. Table 1 below summarizes the best known times
to learn various types of concepts using samples and membership queries.

Samples Queries

Decision Trees NO(log N) poly(N)

DNFs NO(log N) poly(N)

Depth-d Circuits NO(logd−1 N) NO(logd−1 N)

Table 1: Best known running times for learning with N = (s + n), where s denotes the size and n
the number of variables.

Note that every decision tree of size s can be written as a DNF of size ns (by forming disjunctions
of paths to the leaves represented by conjunctions of variables along the path). DNFs form a larger
class of concepts than decision trees. The query algorithm for DNFs described in this lecture will
run in time NO(log log N) rather than poly(N). The faster algorithm listed in the table is known as
the harmonic sieve; it requires a technique from machine learning known as boosting in addition
to harmonic analysis similar to the analysis performed in this lecture.

1 Bounding the Width

In our study of decision trees we first considered learning depth-d trees. Next, we saw how to
approximate a size s tree by a depth-d tree while introducing an error of at most s/2d. Combining
these results we were able to learn a size s decision tree by applying our depth-d tree learning
algorithm. We can use a similar paradigm for constant depth circuits.

Claim 1. Depth-d circuits of size s can be approximated to within ǫ by a width-w depth-d circuit

of size at most s, where w = log(s/ǫ).

Proof. Width-w circuits are circuits with bottom fan-in at most w. Transform a depth-d size s
circuit C into a depth-d size ≤ s width-w circuit C ′ by ignoring all but the first w inputs to each

1

bottom gate. Consider a bottom OR gate. Ignore all but the first w inputs to this gate. Then the
chance that that gate produces an incorrect result with respect to the uniform distribution is

Pr
x

[Error] ≤
1

2w
,

since all of the first w variables must be set to 0 for an error to occur. A similar argument gives
an identical bound for AND gates. By a union bound the chance that C ′ errs is at most s

2w . For
an overall error of at most ǫ, set w = log(s

ǫ
).

Using an argument similar to those we have used in the past two lectures, it is sufficient to
focus on learning circuits which have width-log(s

ǫ
).

2 Random Restrictions

We can show that small circuits of small width have small influence using a result known has the
switching lemma. From the previous lecture we know that we can learn classes of concepts with
small influence. Together this gives us an algorithm for learning small width circuits.

The switching lemma makes use of random restrictions to simplify circuits. A random restriction

R is obtained by leaving each variable independently with probability ρ and setting the other
ones uniformly at random. The restriction can be specified as R = (I, v), where I ⊆ [n] and
v ∈ {−1, 1}|I|. I denotes the set of variables that are fixed by the assignment v. Each i ∈ [n] is
put in Ī with probability ρ independently and the assignment, v, to the fixed variables xi, i ∈ I, is
chosen uniformly at random. Let f |R be the result of applying the restriction R to a function f ,
which is now a function of only the variables in Ī .

The following switching lemma allows us to derive a bound on the decision tree complexity of
a randomly restricted function (D(f |R)):

Lemma 1 (Switching Lemma). If f is a DNF of width w then for all ∆, PrR[D(f |R) > ∆] ≤
(5ρw)∆.

We do not prove this lemma here; it follows from a tricky induction argument.
The Switching Lemma shows that random reductions reduce the decision tree complexity of f

with high probability. This will concentrate the Fourier spectrum onto sets of size at most ∆:

ER


 ∑

S1⊆Ī,|S1|>∆

(ˆf |R(S1))
2


 ≤ 0 · Pr[D(f |R) ≤ ∆] + 1 · Pr[D(f |R) > ∆] = Pr[D(f |R) > ∆].

This is because a decision tree of depth at most ∆ has no weight on sets larger than ∆.
Let x1 be the part of x not restricted by R. Let χS(x1, v) be the character resulting from

2

partitioning the input variables into Ī and I respectively. Then

f |R(x1) =
∑

S⊆[n]

f̂(S)χS(x1, v)

=
∑

S1⊆Ī

∑

S2⊆I

f̂(S1 ∪ S2)χS1∪S2
(x1, v)

=
∑

S1⊆Ī

∑

S2⊆I

f̂(S1 ∪ S2)χS1
(x1)χS2

(v)

=
∑

S1⊆Ī


 ∑

S2⊆I

f̂(S1 ∪ S2)χS2
(v)


 χS1

(x1).

Thus,

f̂ |R(S1) =
∑

S2⊆I

f̂(S1 ∪ S2)χS2
(v). (1)

Going back to the expected two-norm of the Fourier coefficients over sets larger than ∆ and plugging
in the expression for ˆf |R(S1):

ER


 ∑

S1⊆Ī,|S1|>∆

(f̂ |R(S1))
2


 = EI,v


 ∑

S1⊆Ī ,|S1|>∆

∑

S2,S′

2
⊆I

f̂(S1 ∪ S2)f̂(S1 ∪ S′
2)χS2

(v)χS′

2
(v)




= EI


 ∑

S1⊆Ī,|S1|>∆

∑

S2⊆I

(f̂(S1 ∪ S2))
2




= EI


 ∑

S⊆[n],|S∩Ī|>∆

(f̂(S))2




=
∑

S⊆[n]

(f̂(S))2 · Pr
I

[|S ∩ Ī| > ∆].

The first equality follows from (1), and the second one from pushing Ev[·] inside to get Ev[χS2
(v)χS′

2
(v)] =

δS2,S′

2
. The third equality follows from rearranging the terms, and the last one by linearity of expec-

tation. Each of the variables is in Ī with probability ρ independently, therefore EI [|S ∩ Ī|] = |S|ρ.

By setting ∆ ≤ |S|ρ
2 , the probability that |S ∩ Ī| exceeds ∆ is large; assuming ∆ > 5 we have

Pr[|S ∩ Ī| > ∆] ≥
1

2
.

Putting this into our previous equation gives us a bound on the weight of the high frequencies in
the Fourier spectrum in terms of the original expectation:

1

2

∑

S⊆[n],|S|≥ 2∆

ρ

(f̂(S))2 ≤
∑

S⊆[n]

(f̂(S))2 · Pr
I

[|S ∩ Ī| > ∆] = ER


 ∑

|S1|>∆

(ˆf |R(S1))
2


 ≤ Pr[D(f |R) > ∆],

which gives us the following theorem.

3

Theorem 1. For ∆ > 5,
∑

S⊆[n],|S|≥ 2∆

ρ
(f̂(S))2 ≤ 2 · Pr[D(f |R) > ∆].

Applying the Switching Lemma we immediately get the following corollary:

Corollary 1. If f is a DNF of width w then for all ∆ > 5,
∑

S⊆[n],|S|≥ 2∆

ρ
(f̂(S))2 ≤ 2(5ρw)∆.

This corollary can be directly applied to construct a learning algorithm for DNFs with small
width from random samples as it shows that that concept class has a Fourier spectrum concentrated
on low frequencies.

3 Application to Learning DNFs

Applying Theorem 1 will give us two learning algorithms: one using random samples and a faster
one using membership queries.

3.1 Learning DNFs From Random Samples

This application is fairly direct. Setting ρ = 1
10w

and ∆ = log(2
ǫ
) in Corollary 1 gives that

∑

|S|>20w∆

(f̂(S))2 ≤ 2−∆+1 ≤ ǫ.

Now apply the generic learning algorithm from random samples to get an algorithm that runs in
time nO(w log 1

ǫ
), since sampling all sets up to size O(w log 1

ǫ
) dominates the running time. Recall

we need to first transform the DNF to bounded width-w with w = log s
ǫ
. This gives us an overall

running time of nO(log(s
ǫ
) log 1

ǫ
), which is NO(log N) for constant ǫ, where N = n + s.

Theorem 2. If Cn,s is the set of functions computed by DNFs of size at most s on n variables,

then there exists an algorithm that learns Cn,s with respect to the uniform distribution using only

random samples that runs in time poly(nO(log(s
ǫ
) log(1

ǫ
), log 1

δ
).

3.2 Learning DNFs From Queries

The efficiency of the learning algorithm we just obtained hinges on the fact that we only need to
consider components of the Fourier decomposition that correspond to small sets S. We next show
that those Fourier coefficients are fairly concentrated so we can further restrict our attention to the
ones for which |f̂(S)| is above a relatively high threshold. This will allow us to improve the running

time by effectively replacing the n in nO(w log 1

ǫ) by w, but it will require membership queries in
order to locate those sets S. Just like in the previous lecture, we can guarantee the concentration
property we need by showing that

∑
S |f̂(S)| is small, where the sum ranges over the small sets S

we consider for the previous algorithm.
We use the following upper bound.

ER


 ∑

S1⊆Ī

|f̂ |R(S1)|


 =

n∑

∆=0

Pr[D(f |R) = ∆]·ER

[∑
S1⊆Ī |f̂ |R(S1)| D(f |R) = ∆

]
≤

n∑

∆=0

(5ρw)∆·2∆ ≤ 2,

(2)

4

where the last inequality assumes ρ ≤ 1
20w

. The first step in (2) follows from partitioning the
sample space based on the decision tree depth ∆ of the restriction. The first inequality follows
from a direct application of the Switching Lemma and the fact that 1-norm of Fourier coefficients
of decision trees is at most the size of the tree and that decision trees of depth ∆ have size at most
2∆. The final inequality follows by setting ρ = 1

20w
, (this is half the value used in the random

sample application).
On the other hand, we can lower bound the above expectation as follows:

ER


 ∑

S1⊆Ī

|f̂ |R(S1)|


 = EI,v


 ∑

S1⊆Ī

∣∣∣∣∣∣
∑

S2⊆I

f̂(S1 ∪ S2)χS2
(v)

∣∣∣∣∣∣




≥ EI


 ∑

S1⊆Ī

∣∣∣∣∣∣
∑

S2⊆I

f̂(S1 ∪ S2)Ev[χS2
(v)]

∣∣∣∣∣∣




= EI


 ∑

S1⊆Ī

|f̂(S1)|




= EI


 ∑

S⊆[n],S⊆Ī

|f̂(S)|




=
∑

S⊆[n]

|f̂(S)| · Pr
I

[S ⊆ Ī]

=
∑

S⊆[n]

|f̂(S)|ρ|S|.

The first step follows by expanding f̂(S1) as in Equation (1). The next step follows from linearity
of expectation and that fact that |E[x]| ≤ E[|x|]. The third step follows because Ev[χS2

(v)] = δS2,∅

as v is uniformly distributed. The fourth step follows from rewriting, and the next one by linearity
of expectation. The final steps follows because each i ∈ [n] is in Ī independently with probability
ρ. Combining the resuling lower bound with the upper bound (2) we have:

∑

S⊆[n]

|f̂(S)|ρ|S| ≤ 2.

If we consider only sets of size up to 20w∆, this gives a bound of:

∑

|S|≤20w∆

|f̂(S)| ≤

(
1

ρ

)20w∆

·
∑

|S|≤20w∆

|f̂(S)|ρ|S| ≤ 2 ·

(
1

ρ

)20w∆

. (3)

Let S =
{

S such that |S| ≤ 20w∆ and |f̂(S)| ≥ τ
}
. We can bound the 2-norm of the Fourier

coefficients not in S by:

∑

S 6∈S

(f̂(S))2 ≤
∑

|S|>20w∆

(f̂(S))2 +
∑

|S|≤20w∆,|f̂(S)|<τ

(f̂(S))2.

5

The first summation is at most 2−∆+1 by an application of Corollary 1. The second summation

is bounded by τ ·
∑

|S|≤20w∆ |f̂(S)| ≤ τ · 2 ·
(

1
ρ

)20w∆
; this follows from Equation (3) since τ is the

largest possible 1-norm of any set considered. Thus, we have

∑

S 6∈S

(f̂(S))2 ≤

[
2−∆ + τ

(
1

ρ

)20w∆
]
· 2.

By setting ρ = 1
20w

,∆ = log(4
ǫ
) and 1

τ
= 2 · (20w)20w∆/ǫ we lose no more than ǫ weight of the

Fourier spectrum.
This gives 1

τ
= (20w)O(w log 1

ǫ
). Our list decoding algorithm from last lecture ran in time poly(1

τ
),

which dominated the time of the learning algorithm. This gives an overall time of wO(w log 1

ǫ
) =

2O(w log w log 1

ǫ
). With w = log s

ǫ
the running time becomes (s

ǫ
)O(log log(s

ǫ
)·log 1

ǫ
), which is NO(log log N))

for fixed ǫ, as promised.

Theorem 3. If Cn,s is the set of functions computed by DNFs of size at most s on n variables, then

there exists an algorithm using membership queries that learns Cn,s in time poly((s
ǫ
)(log log(s

ǫ
)·log 1

ǫ
), log 1

δ
).

4 Learning Constant Depth Circuits

The following corollary to the Switching Lemma allows us to apply Theorem 1 to depth-d circuits

Corollary 2. If f is a depth-d circuit of size at most s and bottom fan-in at most w then

Pr[D(f |R) > w] ≤ s2−w, where R denotes a random restriction with parameter ρ = (1
10w

)d−1.

Proof. (Sketch) We can view a random restriction with parameter ρ as the succession of d − 1
random restrictions with parameter 1

10w
. The Switching Lemma applied to the bottom-most DNFs

allows us to replace those with high probability by decision trees of depth at most w, and therefore
by CNFs of width at most w. Merging the ANDs with the ANDs on the previous level then reduces
the depth of the circuit by one without affecting the number of gates at higher levels. Bottom-
most CNFs can be handled in a similar way. Each application of the Switching Lemma fails with
probability no more than 2−w. Since there are at most s applications, the result follows. See CS
810 for more details.

Based on Theorem 1 we can then apply our generic approach for learning from random samples.
Using a similar analysis as for DNFs, we obtain an algorithm for learning depth-d circuits of size at
most s from random samples. For fixed ǫ, the algorithm runs in time NO(logd N), where N = n + s.
Additional effort gives time NO(logd−1 N), as claimed in the table at the beginning of the lecture.
An improvement using membership queries as in Section 3.2 remains open.

5 Wrap-Up

This was our last lecture on learning using harmonic analysis, though there are still many interesting
research problems still be to tackled in this area. For example: Can you prove that DNFs are
concentrated on a set of polynomial size? This would give a simpler polynomial time algorithm for
learning DNFs.

6

