
CS 880: Advanced Complexity Theory 2/15/2008

Lecture 10: Hypercontractivity

Instructor: Dieter van Melkebeek Scribe: Baris Aydinlioglu

This is a technical lecture throughout which we prove the hypercontractivity of the noise oper-
ator, a result that will be used in later lectures. The reader may wish to review the notes of lecture
6 for a discussion of the noise operator Tα, the p-norm of a function from the Boolean cube to the
reals, and the notion of hypercontractivity.

1 Hypercontractivity Theorem

Recall the definition of the noise operator on functions f : {−1, 1}n → R:

(Tαf)(x) = E
y∼ǫx

[
f(y)

]
, with ǫ = 1−α

2 ,

where y ∼ǫ x refers to the string y obtained by flipping each bit of x independently with probability
ǫ. Also recall that

(Tαf)(x) =
∑

S⊆[n]

α|S|f̂(S)χS(x) .

Intuitively, the noise operator has a “smoothening effect” on a function, in the sense that the
resulting function is a weighted average of the original function around some neighborhood of its
argument. In the Fourier spectrum, the effect is that the higher frequencies get dampened out.
One consequence of this is hypercontractivity.

Theorem 1. For all p, q, α such that 1 ≤ p ≤ q ≤ ∞ and |α| ≤
√

p−1
q−1 , and for all functions

f : {−1, 1}n → R, ∥∥Tαf
∥∥

q
≤
∥∥f
∥∥

p
. (1)

Remark: If α = 0 then (1) always holds, for then
∥∥Tαf

∥∥
q

=
∣∣E[f ]

∣∣ ≤ ( E[ |f |p ] )
1
p =

∥∥f
∥∥

p
, where

the inequality follows from Hölder’s inequality: E
[
fg] ≤

∥∥f
∥∥

p

∥∥g
∥∥

q
, if 1

p + 1
q = 1 with p, q ≥ 1.

If α = ±1 then (1) fails unless p = q or f is constant in absolute value. This follows because
(T±1f)(x) = f(±x), where −x denotes x with all its bits flipped, and because the only functions f

for which
∥∥f
∥∥

p
=
∥∥f
∥∥

q
for p 6= q are those that are constant in absolute value.

In proving the theorem we will arrive at the condition in the statement of the theorem on |α|
as the weakest one that guarantees (1) to hold.

2 Proof of the Hypercontractivity Theorem

The proof is by induction on n. In the base case we develop the condition on α and in the inductive
step we maintain it.
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2.1 Base Case

The base case is for n = 1. Note that in this case we can represent any function f : {−1, 1}n → R

with the point
(
f(−1), f(1)

)
in 2-space. In what follows we say f to mean either the function or

the point that it corresponds to in 2-space, which is clear in context.
We want to show

√
p−1
q−1 ≤ min

f
max {β : ∀|α| ≤ β

∥∥Tαf
∥∥

q
≤
∥∥f
∥∥

p
} . (2)

Let f(−1) = a and f(1) = b. Then (Tαf)(−1) = 1+α
2 a + 1−α

2 b, and (Tαf)(1) = 1+α
2 b + 1−α

2 a.
WLOG suppose a, b > 0.

Notice that as a point in 2-space (Tαf) is a convex combination of the points (a, b) and (b, a),
hence resides somewhere on the line segment joining (a, b) and (b, a). As α gets closer to 1, (Tαf)
gets closer to (a, b), which is the point for f . As α gets closer to −1, (Tαf) gets closer to (b, a),
which is the point for T−1f . For α = 0, (Tαf) is the midpoint of the line segment [(a, b), (b, a)].

Recall from Lecture 6 that the p-norm of a vector corresponds to the amount that the unit
p-circle should be scaled so that the vector is on the scaled circle. From this it follows that given
f , asking for the largest β for which inequality (1) holds for all |α| ≤ β amounts to asking for the
largest |α| such that, if we scale the unit p-circle so that f is on it, and if we scale the unit q-circle
by the same amount, (Tαf) remains within the (scaled) q-circle.

Note that for fixed (a, b), (Tαf) is linear in α, and therefore the last question is equivalent to
asking for the fraction of the line segment [(a, b), (b, a)] that falls within the q-circle.

N
(a,b)

⋆

◮

◭

α = 1N

α = 0

∥∥Tαf
∥∥

q
>
∥∥f
∥∥

p∥∥Tαf
∥∥

q
<
∥∥f
∥∥

p

H

⋆

◭ ◮

α = −1

∥∥Tαf
∥∥

q
=
∥∥f
∥∥

p

H
(b,a)

Figure 1: Tα resides on the line segment [(a, b), (b, a)], where (a, b) = (f(−1), f(1)). The outer
circle represents the unit p-circle scaled by

∥∥f
∥∥

p
, and the inner circle represents the unit q-circle

scaled by the same amount. Note that the p-circle and q-circle meet on the diagonal. The figure is
for p = 2 and q = ∞.

We state without proof that this ratio decreases as we make a and b get closer while keeping∥∥f
∥∥

p
fixed. We can see that this is plausible if we take p = 2 and q = ∞; see figure 2.1.

Letting δ = a−b
a+b , from the foregoing it follows that we want to find, as δ approaches zero, the

largest |α| such that
∥∥Tαf

∥∥
q
≤
∥∥f
∥∥

p
. We do this in the rest of this section.

First we write
∥∥Tαf

∥∥
q

and
∥∥f
∥∥

p
in terms of δ:

∥∥Tαf
∥∥

q
=

(
(Tαf(−1))q + (Tαf(1))q

2

) 1
q

2
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(a2, b2)

(a1, b1)

(b2, a2)
(b1, a1)

Figure 2: An illustration of the fact, in the case for p = 2 and q = ∞, that as a and b get closer,
max {β : ∀|α| ≤ β

∥∥Tαf
∥∥

q
≤
∥∥f
∥∥

p
} decreases. As we move the line segment from [(a1, b1), (b1, a1)]

to [(a2, b2), (b2, a2)], the portion of the line segment outside the ∞-circle decreases at a slower rate
than the portion inside the ∞-circle, due to convexity of the 2-circle.

=

[
1

2

(
a + b

2
+

a − b

2
α

)q

+
1

2

(
a + b

2
−

a − b

2
α

)q] 1
q

=
a + b

2

[
1

2

(
1 +

a − b

a + b
α

)q

+
1

2

(
1 −

a − b

a + b
α

)q] 1
q

=
a + b

2

(
1

2
(1 + δ α)q +

1

2
(1 − δ α)q

) 1
q

,

and by setting α = 1 and replacing q by p,

∥∥f
∥∥

p
=
∥∥T1f

∥∥
p

=
a + b

2

(
1

2
(1 + δ)p +

1

2
(1 − δ)p

) 1
p

.

Therefore
∥∥Tαf

∥∥
q
≤
∥∥f
∥∥

p
iff

(
1

2
(1 + δ α)q +

1

2
(1 − δ α)q

) 1
q

≤

(
1

2
(1 + δ)p +

1

2
(1 − δ)p

) 1
p

. (3)

Now, using Taylor’s expansion (1 ± δα)q = 1± qδα+ q(q−1)
2 (δα)2 ± · · · , we can rewrite the LHS

of (3) as

LHS ∼
δ→0

(
1 +

q(q − 1)

2
(δα)2

) 1
q

∼
δ→0

1 +
q − 1

2
(δα)2 ,
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where the second line follows again from Taylor’s expansion.
Similarly,

RHS ∼
δ→0

1 +
p − 1

2
δ2 .

Putting together,

LHS < RHS ⇐⇒
δ→0

q − 1

2
α2 <

p − 1

2

⇐⇒ |α| <

√
p − 1

q − 1
,

and by continuity

LHS ≤ RHS ⇐⇒
δ→0

|α| ≤

√
p − 1

q − 1
,

proving the base case.

2.2 Inductive Step

Consider x ∈ {−1, 1}n and a nontrivial partition x = x1x2 with |x1| = k, 0 < k < n. Our first step
is to obtain an expression for (Tαf)(x) in terms of Tα applied to functions on fewer variables, so
we can apply our induction hypothesis.

(Tαf)(x1x2) =
∑

S⊆[n]

α|S|f̂(S)χS(x1x2)

partitioning S consistent with the way x is partitioned,

=
∑

S1⊆[k]
S2⊆{k+1,...,n}

α|S1|α|S2|f̂(S1 ∪ S2)χS1(x1)χS2(x2)

=
∑

S1

α|S1|
(∑

S2

α|S2|f̂(S1 ∪ S2)χS2(x2)
)

︸ ︷︷ ︸
(+)

χS1(x1)

defining a function gx2 : {−1, 1}k → R such that ĝx2(S1) is (+),

=
∑

S1

α|S1|ĝx2(S1)χS1(x1)

=
(
Tαgx2

)
(x1) , (4)

where Tα in the last line is an operator for functions on the Boolean k-cube. For future reference
we point out that for any fixed x1, gx2(x1) as a function of x2 can be expressed as the result of
applying the noise operator Tα on the restriction of f to the Boolean (n − k)-cube defined by x1.
We formalize this observation in the following lemma.

4



Lemma 1. Let gx2 : {−1, 1}k → R be the function such that its Fourier coefficient corresponding

to S1 ⊆ [k] is given by ĝx2(S1) =
∑

S2
α|S2|f̂(S1 ∪ S2)χS2(x2). Then

gx2(x1) =
(
Tα(f |R)

)
(x2),

where R = ([k], x1) restricts f to give f |R : {−1, 1}n−k → R with (f |R)(x2) = f(x1x2).

Proof.

gx2(x1) =
∑

S1⊆[k]

ĝx2(S1)χS1(x1)

=
∑

S1

( ∑

S2⊆{k+1,... ,n}

α|S2|f̂(S1 ∪ S2)χS2(x2)
)
χS1(x1)

=
∑

S2

α|S2|
(∑

S1

f̂(S1 ∪ S2)χS1(x1)

︸ ︷︷ ︸
(#)

)
χS2(x2).

Recall that as part of the discussion in Lecture 9 on random restrictions, we obtained an expression

for f̂ |R(S2), where R = (I, v) and S2 ⊆ [n]\I, as f̂ |R(S2) =
∑

S1⊆I f̂(S1 ∪ S2)χS1(v). Setting
I = [k] and v = x1 in this expression gives precisely (#), and so

gx2(x1) =
∑

S2

α|S2| f̂ |R(S2) χS2(x2)

=
(
Tα(f |R)

)
(x2),

as claimed.

Now we write
∥∥Tαf

∥∥
q

in terms of
∥∥Tαgx2

∥∥
q

so that we can apply the induction hypothesis to
the latter:

∥∥Tαf
∥∥

q
=
(
Ex2

[
Ex1

[ ∣∣(Tαf)(x1x2)
∣∣q ] ]

) 1
q

(by the definition of q-norm)

=
(
Ex2

[
Ex1

[ ∣∣(Tαgx2

)
(x1)

∣∣q ] ]
) 1

q
(by (4))

=
(
Ex2

[ (∥∥Tαgx2

∥∥
q

)q ]) 1
q

(
the inner expectation is just

the q-th power of a q-norm

)

≤
(
Ex2

[ (∥∥gx2

∥∥
p

)q ]) 1
q

. (by the induction hypothesis)

Finally, we massage this last expression such that we get a q-norm instead of a p-norm so that
by Lemma 1 we can apply the induction hypothesis again:

∥∥Tαf
∥∥

q
≤
(
Ex2

[ (
Ex1

[ ∣∣gx2(x1)
∣∣p ]) q

p
]) 1

q
(by the definition of p-norm)

=

((
Ex2

[ (
Ex1

[ ∣∣gx2(x1)
∣∣p ]

︸ ︷︷ ︸
(∗)

) q

p
]) p

q

) 1
p
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viewing (∗) as a function of x2, this entire expression is the p-th root of the q
p -norm of (∗):

=

( ∥∥∥
(∗)︷ ︸︸ ︷

Ex1

[ ∣∣gx2(x1)
∣∣p ]

∥∥∥
q

p

) 1
p

(∗) can be viewed as a convex combination of 2k functions of x2. By linearity and the triangle
inequality, the q

p -norm—which is a valid norm, since q
p ≥ 1—of the convex combination is at most

the convex combination of the q
p -norms of each term, thus yielding

≤

(
Ex1

[ ∥∥∥
∣∣gx2(x1)

∣∣p
∥∥∥

q

p

] ) 1
p

=

(
Ex1

[ (
Ex2

[ ∣∣gx2(x1)
∣∣p· q

p
]) p

q
]) 1

p

(by the definition of
q

p
-norm)

=

(
Ex1

[ ∥∥gx2(x1)
∥∥p

q

]) 1
p

=

(
Ex1

[ ∥∥Tα(f |R)
∥∥p

q

]) 1
p

(by Lemma 1)

≤

(
Ex1

[ ∥∥f |R
∥∥p

p

]) 1
p

(by the induction hypothesis)

=

(
Ex1

[
Ex2

[ ∣∣f |R(x2)
∣∣p ]

] ) 1
p

(by the definition of p-norm)

=

(
Ex1

[
Ex2

[ ∣∣f(x1x2)
∣∣p ]

] ) 1
p

=
∥∥f
∥∥

p
.

2

3 Next Lecture

We will use the instantiation of this hypercontractivity result with q = 2 to prove two theorems
stated in lecture 1, namely that for every balanced function there is a variable with influence

Ω
(

log n
n

)
, and that for every ǫ any function f is ǫ-close to a 2O(I(f)/ǫ)-junta.
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