
CS 880: Advanced Complexity Theory 2/20/2008

Lecture 12: Social Choice Theory

Instructor: Dieter van Melkebeek Scribe: Mark Liu

At the end of the last lecture we briefly introduced our first application of harmonic analysis
to social choice theory. Today we go over this in detail and look at a second application. We saw
last time that there exists a certain coalition that makes up a very small fraction, namely o(1) of
the number of voters, that can ensure that the result of a ”two party election” is forced to their
preference with very high probability. We initially look at this in the case for monotone functions
and then extend this notion to all functions. The second application we look at deals with elections
with more than 2 candidates.

1 Two Candidate Monotone Elections

At the end of last lecture we looked at and proved a theorem for general functions that related the
influence of the most influential variable to the variance and size of the input. This theorem is of
use to us in this lecture so we restate it here.

Theorem 1. There exists c > 0 such that for all f : {−1, 1}n → {−1, 1} there exists i ∈ [n] such

that Ii(f) ≥ c · σ2(f) · log n
n

.

The theorem that we prove in this lecture relates the size of a coalition that is able to sway an
election with high probability to the variance and size of the input. This is the main theorem of
the lecture.

Theorem 2. There exists a d > 0 such that for all f : {−1, 1}n → {−1, 1} there exists a C ⊆ [n]

such that |C| ≤ d ·
log(1

ǫ
)

σ2(f)
· n

log n
such that IC(f) ≥ 1 − ǫ.

C represents the coalition and is the set of all voters (i.e., bits in the input string) that are part
of the coalition. Also, we need to define IC(f).

Definition 1. IC(f) = Prx[(∃C ′ ⊆ C)f(x(C′)) 6= f(x)]

In this definition, x(C′) means to take x and flip all of the bits in the coalition C ′. This is
consistent with the general notation we have been using where x(i) refers to the string x with the
ith bit flipped. Another way to think about this definition is as the probability that the restriction
of f obtained by randomly fixing x outside of C, is mixed, i.e., is not constant.

Note that we take the probability over the uniform distribution of x. In social choice theory,
this is known as the Impartial Culture assumption, or IC for short. This assumption simply states
that each voter is equally likely to vote for either candidate and their vote does not depend on
anyone else’s votes.

We first establish Theorem 2 in case f is monotone. For voting schemes, monotonicity is a
natural requirement. Moreover, in case f is monotone, we can interpret Theorem 2 as the existence
of a small coalition that can force the outcome of the election. This is because the voters in C do not
need to know the outcome of votes outside of C; they simply vote for their favored candidate and
thereby make sure that candidate gets elected. The latter may not hold in case f is not monotone.

1

Proof. (Of Theorem 2) We construct the set C as C = C−1 ∪C1, where Cv denotes a coalition that
allows us to force the outcome v with probability at least 1 − ǫ/2. Since f is monotone, the latter
is equivalent to the condition that Prx[f(x(Cv←v)) = v] ≥ 1 − ǫ/2.

We show how to construct C1; the construction of C−1 is symmetric. The idea is to successively

add the most influential variable left to C1. More formally, let f (k)(x) = f(x(C
(k)
1 ←1)). Here, f (k)

is the function f after the kth iteration, after we have forced all of the variables in our coalition so
far to be 1. The probability of getting a 1 continually increases as we go through more iterations.
We keep going until that probability exceeds 1 − ǫ/2.

Let us denote the probability after the kth iteration by pk = px[f
(k)(x) = 1]. We claim that

pk+1 = pk +
Ii(f

(k))

2
,

where i is a most influential variable left at the kth step and is the variable we choose to add to C in
the kth step. This is because the increase in probability is due to those inputs x that are sensitive
to the ith variable. The fraction of such inputs equals Ii(f

(k)). Of those inputs, half already had
value 1 under f (k) and therefore do no contribute to the increase in probability; the remaining half
do.

Given our claim, we now analyze how quickly pk grows. By our choice of the most influential
variable, Theorem 1 tells us that

Ii(f
(k)) geqc · σ2(f (k))

logn

n
= 4c · pk(1 − pk)

logn

n
.

Our claim and the fact that pk ≥ p0 then gives us that

1 − pk+1 = 1 − pk −
Ii(f

(k))

2

≤ 1 − pk − 4c · pk(1 − pk)
log n

n

= (1 − pk)(1 − 4c · pk

log n

n
)

≤ (1 − pk)(1 − 4c · p0
log n

n
).

Thus,

(1 − pk) ≤ (1 − p0)(1 − 4c · p0
log n

n
)k ≤ (1 − p0) · e

−4c·p0·k·
log n

n ≤
ǫ

2
,

as long as

k ≥
1

4cp0
·

n

log n
· ln(

2(1 − p0)

ǫ
).

For the set C−1 we can just replace p0 by (1 − p0). We conclude that

|C| ≤ |C−1| ∪ |C1|

≤
1

4c · p0(1 − p0)
·

n

log n
·

(

ln(
2

ǫ
) + p0 ln p0 + (1 − p0) ln(1 − p0)

)

.

The term p0 ln p0 +(1− p0) ln(1− p0) is Θ(−H(p0)), where H denotes the binary entropy function.
Since H(p0) = O(1), we can ignore that term asymptotically. This gives us the claimed bound.

2

2 Two Candidate General Elections

We now extend Theorem 2 to nonmonotone functions f . To do so, we show that a arbitrary
function can be transformed into a monotone function that maintains the critical properties of the
original function. We prove a lemma that claims we can take any function f and create a monotone
function Mf that has variance equal to f ’s variance and has all influences less than or equal to f ’s
influences.

Lemma 1. Given any f : {−1, 1}n → {−1, 1}, there exists a monotone function g : {−1, 1}n →
{−1, 1} such that σ2(g) = σ2(f) and for all C ′ ⊆ [n] : IC′(g) ≤ IC′(f).

Proof. To prove the lemma we create n monotonization operators where the ith monotonization
operator makes the function monotone with respect to the ith variable without increasing influence
and while keeping the variance the same.

Consider the following construction for our ith bit monotonization operator Mi:

(Mif)(x) = min(f(xi←−1), f(xi←1)) if xi = −1

(Mif)(x) = max(f(xi←−1), f(xi←1)) if xi = 1

Effectively, the operator partitions the domain {−1, 1}n into 2n−1 pairs of inputs which only differ
in the ith coordinate. It enforces monotonicity of the 2n−1 individual restrictions to those pairs by
swapping the function values of the pair of inputs whenever necessary. To prove the lemma, we
want the operator to have the following 4 properties:

1. Mif is monotone in xi.

Proof. This follows immediately from the above interpretation of the construction of Mi.

2. If f is monotone in xj for j 6= i, then so is Mif .

Proof. For any fixed choice of xk, k ∈ [n]\{i, j}, we can represent the values of the restriction
in a table of the following form.

xi \ xj -1 1

-1

1

If f is monotone in xj, before the application of Mi the number of -1’s in the left column is
at least the number of -1’s in the right column. Since the effect of Mi on each column is to
sort it, after the application of Mi the -1’s in each row come first. This means that Mif is
monotone in xj.

3. σ2(f) = σ2(Mif).

Proof. This follows because Mi only swaps values, so the total number of each value remains
the same, and thus also the variance.

4. (∀C ⊆ [n])IC(Mif) ≤ IC(f). In other words, the influence for any coalition does not go up.

3

Proof. We consider two cases. If i ∈ C, then IC(Mif) = IC(f). This is because Mi only

swaps values of points x that coincide on C, so for each ξ ∈ {−1, 1}C |, the restriction f |C←ξ

is mixed iff (Mif)|C←ξ is.

Now consider the case where i 6∈ C. Using a similar notation as above, for each choice of xk,
k ∈ [n] \ (C ∪ {i}), we can represent the values of the restriction in a table of the following
form.

xi \ x|C (−1)|C| (−1)|C|−11 . . . 1|C|

-1

1

We argue that the number of rows that is mixed after the application of Mi is not larger than
before.

If after the application of Mi at least one row is mixed, then the table as a whole is mixed.
Since Mi just swaps elements in the table, before the application of Mi the table was mixed,
too, and thus has to contain at least one mixed row.

So, the only remaining case we need to consider is if after the application of Mi both rows
are mixed. In that case, since Mi sorts columns, there has to be a column that is constant
-1 and another column that is constant 1. Since Mi only swaps elements within columns, the
same has to be true before the application of Mi, so both rows were mixed to start from.

So now if we let M = M1M2M3 · · ·Mn then we have all of the properties we want and we have
proven the lemma.

3 Three Or More Candidate Elections

The first thing we look at here are Condorcet Methods which are methods to decide which candidate
would beat each of the others in a run-off election. The Condorcet method that we look at has each
of the voters rank all of the candidates and then looks at all of the pairwise rankings. It simply
applies the aggregation function f to each pair of candidates to determine which one wins. The
hope is that this gives a ranking of the candidates. However, this does not always work.

Condorcet’s Paradox: This procedure fails when f is the majority function. Suppose we have
the following three graphs presented in Figure 1. Using our algorithm, we sum up the number of
directed edges pointing to each candidate and then reconstruct the graph by using directed edges
pointing towards the majority vote for each candidate pair. Looking at the aggregate graph, we
define a rational outcome to be one in which there are no cycles, meaning there is a clear winner
among the candidates. We call this cyclic behavior irrational because if the voters prefer A over
B and B over C, then preferring C over A violates the transitivity of people’s preferences. In the
case of Figure 1, the aggregate graph turns out to have a cycle which is therefore not rational
behavior. This shows our Condorcet procedure cannot work in all cases, since we started with
rational behavior by the voters but ended up with an irrational result.

Theorem 3. The only aggregation functions f that maintain rationality are dictators and anti-

dictators.

4

CB

A

CB

A

CB

A

CB

A

1 2 3

majority

Figure 1: Condorcet Paradox

Proof. We claim that our function f maintains rationality if and only if Pr[T f accepts] = 1 where
T f is a test using the function f and is defined in homework 1 problem 2. This test accepts if
and only if f(x), f(y), and f(z) are not all equal when the strings x, y, and z are formed by
triples (xi, yi, zi) created independently and uniformly at random among the triples for which
xi, yi, and zi are not all equal. We can see that if this test ever rejected, that would mean that
despite the rational inputs, the outputs were all the same and we therefore ended up with an
irrational output. Therefore the only way to maintain rationality with 100% certainty is to ensure
Pr[T f accepts] = 1. As a notational note, let the expression Wk =

∑

S⊆[k](f̂(S))2. We found the
expression for the exact probability of this test in homework 1 so we have:

Pr[T f accepts] =
3

4
+

1

4
·

∑

S⊆[n]

(−
1

3
)|S|−1 · (f̂(S))2

=
3

4
−

3

4
· W0 +

1

4
· W1 −

1

12
· W2 +

1

36
· W3 + ...

≤
3

4
+

1

4
· W1 +

1

36
(1 − W1)

=
7

9
+

2

9
W1

These equations equate to 1 iff W1 = 1 meaning all of the weight fell onto the Fourier coefficient
corresponding to size 1. This implies that W0 = 0 which means that the function has to be balanced.
Also, since the influence is expressed as I =

∑

|S| · (f̂(S))2 we can see that the influence must be
exactly 1. Since we know from problem 1 on homework 1 that a balanced Boolean function that
has total influence 1 must be either a dictator or an anti-dictator, we have concluded our proof.

5

