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Lecture 13: Average-Case Hardness

Instructor: Dieter van Melkebeek Scribe: Tom Watson

In this lecture and the next two lectures we study hardness amplification, in which the goal
is to take a mildly average-case hard function from some class and construct another function in
that class that is very average-case hard. Today we prove a lemma that roughly states that every
average-case hard function has a set of inputs that encapsulates the hardness of that function in a
certain sense. In the next two lectures, we will use this tool to prove hardness amplification results
within E and within NP. We will not need harmonic analysis in today’s lecture.

1 Worst-Case vs. Average-Case Complexity

Consider the following informal question: If a complexity class contains a problem that is worst-case
hard, does it contain a problem that is average-case hard? This question has relevance in several
contexts:

e Complexity theory. Worst-case complexity is the most common measure of hardness in com-
plexity theory. However, for certain results, average-case complexity plays a crucial role.
The basic construction of pseudorandom generators for time-bounded computations requires
a problem in E that is average-case hard against nonuniform circuits. These pseudorandom
generators are computable in time linear exponential in the seed length, which is fine for
derandomization purposes since all the seeds must be cycled through anyway. It is known
that if E contains a problem that is worst-case hard for exponential-size circuits, then it
contains a problem that is very average-case hard for circuits of roughly the same size, so
derandomization can be based on worst-case hardness assumptions.

e Cryptography. The security of any nontrivial cryptosystem requires some computational
problem to be average-case hard in some sense. For example, it is necessary for the security
of the RSA cryptosystem that factoring is average-case hard under a certain distribution.
We need hard problem that are in NP, since decryption requires that the problem is easy to
solve given a secret key. Unlike the derandomization setting, it is unknown how to obtain
average-case hard problems in NP from a worst-case hardness assumption on NP. A major
open question is whether any nontrivial form of cryptography can be based on the assumption
P # NP. The weakest assumption known to imply nontrivial cryptography is the existence
of a one-way function, which is an average-case hardness assumption.

One approach for obtaining the aforementioned worst-case to average-case transformation within
E is to start from a worst-case hard function and encode the characteristic sequence at some input
length with a good locally list-decodable error-correcting code. The resulting codeword then forms
the characteristic sequence of a very average-case hard problem. This approach is problematic if
we want the average-case hard problem to be in NP, since evaluating one bit of the codeword seems
to require looking at the entire information word, which takes exponential time. Another approach
for obtaining the transformation within E operates in two steps:



1. A mildly average-case hard problem is constructed from a worst-case hard problem.

2. A very average-case hard problem is constructed from a mildly average-case hard problem.

We do not know how to achieve step 1 within NP, but step 2, which is known as hardness
amplification, can be achieved within NP. In this lecture, we develop our main tool for hardness
amplification. In the next two lectures we show how to use this tool for hardness amplification
within E and within NP. Harmonic analysis is used in determining how average-case hard the
constructed functions are.

1.1 Hardcores

We begin with some definitions, leading to the statement of our main lemma. Throughout this

lecture, whenever we choose a random input z from some subset of {—1,1}", it is done uniformly.

For H C {—1,1}", we use the notation u(H) = ‘2Hn|.

Definition 1. A function f: {—1,1}" — {—1,1} is e-hard for size s if for all circuits C of size at
most s, Pr,[C(x) # f(z)] > e.

Clearly, we cannot hope for f to be e-hard if € > %, since either the constant —1 function or
the constant 1 function agrees with f on at least half the inputs. Our goal is to get € as close to %
as possible. Specifically, given f that is mildly hard (e = ﬁ(n)) for size s, we wish to construct g

that is very hard (e = % —0(1)) for some size s’. In our proofs, we will have to settle for s’ being a
little smaller than s. In the E setting, it is known how to get (% — 2@—1(”))-hardness from a worst-case
hardness assumption. In the NP setting, the result is weaker in two respects: we start from a mild
average-case hardness assumption, and we don’t get € as close to % In the next two lectures, we will

show a (3 — o(1))-hardness result; currently the best known result achieves (1 — -hardness.

1
A key notion in our proofs is that of a hardcore.

Definition 2. Fix a function f : {—1,1}" — {—1,1}. A é-hardcore for size s is a set H C {—1,1}"
such that for all circuits C of size at most s, Pryep[C(z) = f(z)] < 5+ 4.

Note that if f has a é-hardcore H for size s with p(H) > e, then f is e(3 — §)-hard for size s.
Surprisingly, the converse also holds, modulo some changes in the parameters. That is, if a function
is mildly average-case hard, then there is a set of inputs of relative size the hardness of f on which
f is very average-case hard.

Lemma 1 (Hardcore Lemma). If f is e-hard for size s, then for all 6 > 0 there exists a 0-hardcore
H with u(H) > € for size s' = ©(s), where the constant in the © depends on € and 0.

The Hardcore Lemma is our main tool for hardness amplification. A number of proofs of this
lemma are known; the one we now present does not give the best dependence of s’ on € and 4, but
the proof is fairly clean as is good enough for our purposes. We refer to the statement at the end
of the lecture notes for the precise dependence of s’ on € and § which our argument yields.



2 Proof of the Hardcore Lemma

Fix a function f:{—1,1}" — {—1,1} that is e-hard for size s, and assume WLOG that €2" is an
integer. Consider the following two-player zero-sum game: one player picks a circuit C’ of size at
most ', the other player picks a set H C {—1,1}" with u(H) = ¢, and the payoff to the C’ player
is Pryey[C'(z) = f(x)]. That is, the C’ player tries to pick a C’ that performs well on H, and
the H player tries to pick an H on which C’ does not perform well. By the well-known Minimax
Theorem (which is equivalent to strong duality of linear programming), the expected payoff does
not depend on which player selects his strategy first, provided we allow randomized strategies.

MAX  MIN Eq [ Pr[C'(a) = f(@)]] = MIN  MAX EH[ Pr[C'(x) = f(@)]] (1)
distributions ~H with e distributions C’ of e
over C' of  p(H)=¢ over H with  size < s/
size < & w(H)=e

Note that we assume the player who selects his strategy second picks a pure strategy; this is
without loss of generality because for any fixed randomized strategy of the first player, the expected
payoff for any distribution on pure strategies of the second player is a convex combination of the
expected payoffs for pure strategies of the second player.

If we only considered deterministic strategies for the first player, the left side would be 0,
assuming s’ < s. This is because, by our hardness assumption on f, the maximum over all circuits
C’ of size at most s of the minimum over H with pu(H) = € of Pryep[C'(x) = f(z)] is 0. With
randomized strategies we can always achieve a value of at least 1/2. In the first part of the proof of
the Hardcore Lemma, we show that the value for randomized strategies cannot grow much larger
than 1/2 when f is e-hard. We do so in Section 2.1.

In the second part of the proof we use this upper bound on the right side of (1) to construct a
d-hardcore H with pu(H) > e. We show that if there is a distribution on Hs against which no small
circuit can do well, then we can extract a single set H' against which no small circuit can do well.
This is the contents of Section 2.2.

2.1 Bounding the Value of the Game

We now upper bound the left side of (1) by % + v for any ~, when s’ is chosen appropriately
depending on . We do this by showing that if the left side is greater than % + ~ then we can
construct a circuit C' of size at most s such that Pr;[C(x) # f(z)] < €, contrary to our hardness
assumption on f.

What does it mean for the left side of (1) to be greater than % + 77 It means that there exists
some distribution over C’ of size at most s’ such that for all H with u(H) = ¢,

Pr [C(@) = f(@)] > 5 +7 @
zeH

We construct a distribution over circuits C' as follows: take t independent samples of C’ and let C
on input z € {—1,1}" output the majority vote of these t circuits. Using the bound (2), we will
show that if ¢ is chosen appropriately, then

Pr [Cz) # fl2)] <e.

ze{-1,1}"



By the probabilistic method, this implies that there is some particular C' such that Pr,[C(z) #
f(x)] < e. This contradicts the supposed hardness of f provided we choose s’ small enough to

ensure that C has size at most s.
Define

B={r : BfiC'@)= fo)] < 5 +7)
to be the set of “bad” inputs, where 7 is some threshold to be set later. We use the fact that
Pr(C(2) # f(@)] = u(B)- Pr[Clw) # f(@) | v € B] + (1 - u(B)) - Pr [C(x) # f(2) | = & B]
< W(B) + Pr[Ca) # f(x) | # ¢ B].

We first upper bound p(B). If 7 < 7 then we must have u(B) < € since otherwise we could
take H C B with u(H) = e and have

1
Py (') = f@)] = B [PHO'@) =5@]] < B [3+7] = 347 < 547

reH
contrary to (2). However, since we want to show that p(B) + Prc,[C(z) # f(z) | z € B] < e,
we're going to have to do a bit better. Since we know u(B) < €, let’s extend B to a superset H
with u(H) = € in an arbitrary way. Then applying (2), we have

S+ < Pr[C@) = (@)

reH
_ @. Py [C'(w) = f(a) |w€ B] + (1- “(f)) - Pr [C'(2) = f(a) | @ € H\B]
zeH zeH
(B) (1 (B)
A (L) + ()
which implies that .
w(B) < E:ZE < (1-(v=1)e
2

Thus if we pick 7 < v then we get a bound on u(B) that is better than e.

We now turn to upper bounding Prc . [C(z) # f(z) | ¢ B). For & ¢ B, each circuit C’ chosen
for C satisfies C’(z) = f(x) independently with probability greater than £+, and for C(z) # f(z)
to hold it would have to be the case that C’(z) = f(z) for at most half of the ¢ circuits C’. Thus
by a standard Chernoff bound, we have Prc[C(z) # f(z)] < exp (— Q(r%t)) for each z ¢ B. It
follows that

Pr[C(@) # f(@) | @ ¢ B] < exp (- Q7).

Putting everything together, we have

Pr(C(a) £ f@)] < (1= (7= 7)e + exp (= Q).

As we noted before, this implies that there exists a particular circuit C such that Pr;[C(z) # f(z)]
satisfies the same bound. Picking 7 = 3 and t > 6(7% log %) ensures that this bound is less than
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€. This contradicts the supposed hardness of f provided C has size at most s. How big is C? It
consists of t circuits O’ each of size at most s’ and an O(t) size majority circuit, so it has size at
most O(Z = log s"). This bound at most s if

2
s'§O< i il -s).
log%

We summarize what we have shown in the following lemma.

Lemma 2. If f is e-hard for circuits of size s, then for all v > 0 the value of equation (1) is at
most § +~ when s’ < O(1 o - 5).

2.2 Obtaining the Hardcore

By (1) and Lemma 2 we know that for all v > 0, the right side of (1) is at most % +~ when s’ is as
in Lemma 2. What does it mean for the right side of (1) to be at most % + 77 It means that there
exists some distribution over H with p(H) = e such that for all C’ of size at most s/,

1
+7.

Pr [C'(x) = f(@)]| < 5

H LxeH
What we would like is one particular H such that for all C” of size at most s, Prye g [C'(z) = f(z)] <
% + ; then we could take v = ¢ and be done. We may not be able to find such an H, but suppose
we could show that for each C’, the random variable Pr ep[C’(x) = f(z)] over the choice of H
were highly concentrated about its mean. Then for each C’, Pry [Pryen[C’(z) = f(z)] > 3 + 27]
would be extremely low, so by a union bound over C’, Pryey[C’(z) = f(z)] < 3 + 2y would hold
for all ¢’ simultaneously with positive probability over the choice of H, in which case we could
take v = g and be done. We can’t guarantee this concentration result for the given distribution
over Hs, but we can do a similar thing for a somewhat different distribution, which we now define.
Construct a distribution over sets H' C {—1,1}" by putting each z in H' independently with
probability Pry[z € H|, where the latter probability is over the distribution on Hs with pu(H) =€
guaranteed by the Minimax Theorem. Note that the H’s in the support of this new distribution
do not all have u(H') > e. However, note that

B[u(H')] =

!
o 5o > Prlr € H' ZPr (v € H] = E[u(H)] = e.

xT

Since x’s are placed in H' independently, the distribution of u(H’) is close to a scaled normal
distribution and so we have

Prlu(H') 2 = 0(1).

We will see shortly that this is good enough.

For a fixed C’, we intuitively expect the random variable Pr,c g/ [C’(x) = f(x)] over the choice of
H' to be highly concentrated because the x’s are chosen independently in H’'. We argue something
slightly different, namely that the number of x € H' such that C’(z) = f(x) is highly concentrated
about its mean. We will then combine this with our above observation that Pry/[u(H') > €] = Q(1)
to finish the proof of the Hardcore Lemma.



Let Ror = {x : C'(z) = f(z)} be the set of inputs on which C’ is “right”, and let Acr = |[H'N
Rer| be the “agreement” random variable over the choice of H'. Note that Acv = >~ Res Iy(xz e

H'), where Iy, (z € H') is the indicator random variable over the choice of H' for the event x € H'.
We have

ElAc)= > Prlz e H

:EERC/

Since the indicators Iy (x € H') for € {—1,1}" are fully independent, a standard Chernoff bound
(namely, that a sum of fully independent indicators differs from its expectation E by at least AF
with probability at most exp (—Q(A2E))) yields

gy [AC/ > (% + 27) . 62"} <exp (- 9(7262")).

Since this holds for all C” of size at most s, and we can bound the number of circuits of size s’ by
(n + s')*, a union bound shows that with probability at least

1—(n+ s/)s, exp ( — 9(7262”))

over the choice of H’, all C’ of size at most s’ satisfy Ao < (% +2v)-€2". Assuming this probability
is sufficiently close to 1, it follows from the fact that Pry/[u(H') > €] = Q(1) that with positive
probability H' satisfies both u(H') > € and Acv < (3 +27) - €2 for all C’ of size at most s’. Thus,
there exists an H’ such that p(H') > € and Prpep/ [C'(z) = f(2)] < 3+ 27 for all C” of size at most
s'. Taking v = % and using the fact that every function on n bits can be computed by circuits of

size (1 + 0(1))2"/n, we have arrived at the following precise formulation of the Hardcore Lemma.

Lemma 3. There ezists a universal constant ¢ such that for all functions e(n) > 0 and §(n) > 0
there exists an ng such that the following holds. If f : {—1,1}" — {—=1,1} is e(n)-hard for size
s < €(n)2™ and n > ng then there exists a set H C {—1,1}" such that p(H) > e¢(n) and H is a
§(n)?

71 . S.
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d(n)-hardcore for size ' = c -



