
CS 880: Advanced Complexity Theory 25/2/2008

Lecture 14: Hardness Amplification

Instructor: Dieter van Melkebeek Scribe: Adeel Pervez

Last time we introduced a strategy for constructing a problem that is very hard in the average
case assuming the existence of a problem in E that is hard only in the worst case. This strategy
does not work for NP since the currently known techniques run in exponential time. Hardness
amplification, however, can be done within NP. Here the goal is to construct a very average-case
hard language under a ‘mild’ average-case hardness assumption. Today we develop some results
regarding hardness amplification of general Boolean functions using the XOR Lemma. In the next
lecture we will see details of hardness amplification within NP.

1 Hardcore Lemma

Recall that the Hardcore Lemma says that for every hard function there is a set of inputs on which
it is very hard, in the sense that any circuit for the function, of upto a certain size, cannot do much
better than to output a random bit.

Lemma 1. If f is ǫ-hard for size s, then there exists H ⊆ {−1, 1}n with µ(H) ≥ ǫ such that for

all δ > 0 and all circuits C of size at most Ω(δ2

log(1/δǫ))s,

Pr
x∈H

[C(x) = f(x)] ≤
1

2
+ δ.

This lemma turns out to be important for the XOR Lemma which we study next.

2 XOR Amplification Lemma

Given a hard function f , the XOR Amplification Lemma allows us to construct a new function
that is much harder than f .

The intuition behind the lemma is this: Consider an information-theoretic view of the Hardcore
Lemma; namely, given an input in the hardcore set we do not know how to compute f on that
input. Then if we take serveral copies of f and consider their aggregate with respect to some
function like XOR, then it will be hard to compute as soon as the input of one of the copies of f
belongs to the hard set. Thus, the new function has a larger set, in terms of relative size, on which
it is hard to compute.

Let us quantify this intuition. Let f⊗k denote k independent copies of f , i.e.,

f⊗k : (x1, x2, . . . , xk) → (f(x1), f(x2), . . . , f(xk)).

For an input of f⊗k to be outside the hardcore set, all xi’s (1 ≤ i ≤ k) have to be outside the
hardcore set. Thus the size of f⊗k’s hardcore complement goes down exponentially with k. More
precisely, if H and H ′ are f ’s and f⊗k’s hardcore sets then µ(H ′) ≈ 1 − (1 − µ(H))k, where µ(H)
denotes the relative size of H. The function f⊗k is not Boolean. Using an aggregator like XOR

1

(or product in {−1, 1}) gives us a Boolean function. The resulting function is g(x) =
∏k

i=1 f(xi),
which we denote by g = · ◦ f⊗k.

The above intuition interprets the notion of a hardcore in an information-theroretic sense,
whereas the set H of Lemma 1 is only hardcore in a computational sense. We next analyze how
the information-theoretic intuition translates into the computational setting.

Lemma 2. If f is ǫ-hard for circuits of size at most s, then for every δ > 0, g = · ◦ f⊗k is ǫ′-hard
for circuits of size at most s′, where ǫ′ = 1

2 − (1 − ǫ)k − δ and s′ = Ω(δ2

log 1/(ǫδ))s.

Proof. We prove the lemma by considering the contrapositive. Suppose that g is not too hard.
More precisely, suppose there exists a circuit C ′ of size at most s′ that can compute g correctly on
a fraction greater than 1

2 + δ′, where δ′ ≥ δ + (1 − ǫ)k:

Pr
x1,x2,...,xk

[C ′(x1, x2, . . . , xk) =
∏

1≤i≤k

f(xi)] ≥
1

2
+ δ′. (1)

From this we construct a circuit C that violates the conclusion of Lemma 1, thus showing that f
is not ǫ-hard for circuits of size s.

Let H ⊆ {−1, 1}n be nonempty. By conditioning on H, (1) implies

[1 − (1 − µ(H))k] · Pr
x1,x2,...,xk

at least one xi∈H

[C ′(x1, x2, . . . , xk) =
∏

1≤i≤k

f(xi)] + (1 − µ(H))k ≥
1

2
+ δ′,

where the probability is uniform over the tuples (x1, x2, . . . , xk) that contain at least one component
from H. Rearranging we get

[1 − (1 − µ(H))k] · Pr
x1,x2,...,xk

at least one xi∈H

[C ′(x1, x2, . . . , xk) =
∏

1≤i≤k

f(xi)] ≥
1

2
+ δ′ − (1 − µ(H))k.

We can generate the underlying distribution by picking i ∈ [n] uniformly at random, then xi ∈ H,
and then xj ∈ {−1, 1}n for each j 6= i. By an averaging argument, we can fix everything except for
the xi in H and still maintain the inequality:

(∃i ∈ [n])(∃xj , j 6= i) Pr
xi∈H

[C ′(x1, . . . , xk) =
∏

1≤i≤k

f(xi)] ≥
1

2
+ δ′ − (1 − µ(H))k.

Hardwiring the choice of i and xj , j 6= i, gives a circuit C of size at most s′ such that

Pr
x∈H

[C(x) = f(x)] ≥
1

2
+ δ′ − (1 − µ(H))k.

This means that H cannot be a δ-hardcore for f and size s′ if δ ≤ δ′− (1−µ(H))k. Thus, f cannot
have a δ-hardcore H of relative size µ(H) ≥ ǫ for circuits of size s′ as long as δ ≤ δ′ − (1− ǫ)k. By
Lemma 1, this means that f is not ǫ-hard for circuits of size s.

2

3 Instantiations

In this section we present some instantiations of Lemma 2 obtained by fixing ǫ = 1/poly(n) and
varying s. We present these results in terms of the notion of average-case hardness generally used
in the context of derandomization.

Definition 1. The hardness Hg(m) of a function g at inputs of size m is that largest s′ such that

no circuit of size s′ can satisfy

Pr
|x|=m

[C ′(x) = g(x)] ≥
1

2
+

1

s′
.

Assuming f has (worst-case) circuit complexity at least s(n), we obtain the following average-
case hardness results for g at length m = k · n:

1. For s(n) = nω(1), Hg(m) = nω(1) = mω(1).

2. For s(n) = 2nΩ(1)
, Hg(m) = 2nΩ(1)

= 2mΩ(1)
.

3. For s(n) = 2Ω(n), Hg(m) = 2Ω(n), which is at best 2Ω(
√

m) since k needs to be Θ(n) for
exponential hardness. This is still not good enough for full derandomization since for that
we need the hardness to be 2Ω(m). It is possible to realize the latter by picking the k = Θ(n)
inputs from a pseudo-random distribution that can be generated from Θ(n) truly random bits
(rather than the Θ(k · n) random bits needed for k independent uniform samples). However,
we will not study these derandomization techniques in this course.

We point out that the transformation of f into g is very efficient. The techniques based on
error-correcting codes which we studied in CS 810, take exponential time as they act on the entire
truth-table of f at length n. In contrast, the our transformation runs in time polynomial in
n (assuming k is polynomially bounded). Unfortunately, we cannot guarantee that g is in NP
whenever f is. This is due to the fact that the XOR function is not monotone. We next consider
combining function other than XOR, and in particular monotone ones.

4 Hardness Amplification for Balanced Functions

Let g be the following function
g = h ◦ f⊗k,

where f is balanced and h is an arbitrary function. In this section we analyze the hardness of such
a function. In particular, we obtain a lower bound for the hardness of g in terms of a characteristic
of h. A corollary of the result obtained here allows us to achieve our goal of amplification within
NP by picking simple monotone functions within NP for h.

4.1 Analysis

Consider the distribution x1x2 . . . xkf(x1)f(x2) . . . f(xk). If some xi belongs to the hardcore set,
we can view f(xi) as random under our information-theoretic view of the Hardcore Lemma. To

3

simplify things a little, consider xf(x). We replace f(x) by the random variable F defined as
follows:

F =

{
f(x) if x 6∈ H
random bit otherwise

For small circuits the distributions xf(x) and xF look exactly the same since H is a δ-hardcore
for f . More precisely, the ǫ-hardness of f for circuits of size s implies that f cannot be predicted
on a fraction at least 1

2 + δ of H by circuits of size s′. By the connection between unpredictability
and computational indistinguishability (see CS 810), this implies that for all circuits C of size at
most s′

|Pr[C(x, f(x)) = 1] − Pr[C(x, F) = 1]| ≤ δµ(H) ≤ δ,

where the probability is over a uniform choice of x ∈ {−1, 1}n and over the randomness in F . For
the distributions x1x2 . . . xkf(x1)f(x2) . . . f(xk) and x1x2 . . . xkF1F2 . . . Fk, this becomes

|Pr[C(x1, x2, . . . , xk, f(x1), f(x2), . . . , f(xk)) = 1] − Pr[C(x1, x2, . . . , xk, F1, F2, . . . , Fk) = 1]| ≤ kδ,
(2)

where the circuit is now of size at most s′ and Fi for 1 ≤ i ≤ k is defined analogously to F above.
Now let C ′ be a circuit of size at most s′ − size(h) computing h. Then,

|Pr[C ′(x1, x2, . . . , xk) = h(f(x1), f(x2), . . . , f(xk))]−Pr[C ′(x1, x2, . . . , xk) = h(F1, F2, . . . , Fk)]| ≤ kδ.
(3)

This is true because otherwise we would be able to construct a circuit C of size at most s′ that
would violate (2).

We need an upper bound for Pr[C ′(x1, x2, . . . , xk) = h(f(x1), f(x2), . . . , f(xk))], but since the
two terms on the left-hand side of (3) are no more than kδ apart, it suffices prove an upper bound
for the other term, i.e., for

Pr[C ′(x1, x2, . . . , xk) = h(F1, F2, . . . , Fk)],

where the probability is over the uniform choice of x1, x2, . . . , xk and the randomness in the Fi’s
for which xi ∈ H.

Fix an input x1, x2, . . . , xk and consider the restriction R = (I, v) where I = {i ∈ [k] |xi 6∈ H}
and v contains all function values f(xi) for i ∈ I. Since the Fi’s for i 6∈ I are just independent
random bits and C ′ needs to agree with h(F1, F2, . . . , Fk), the best C ′ can possibly do on input
x1, x2, . . . , xk is to output the majority value of h|R. Thus,

Pr[C ′(x1, x2, . . . , xk) = h(F1, F2, . . . , Fk)]

≤ ER[max(Pr[h|R = 0],Pr[h|R = 1])]

= ER

[
Pr[h|R = 0] + Pr[h|R = 1]

2
+

|Pr[h|R = 0] − Pr[h|R = 1]|

2

]

=
1

2
+

1

2
ER[Bias(h|R)],

where the expectation is over the distribution on R induced by a uniform choice of x1, x2, . . . , xk,
and the bias of a function h with range {−1, 1} is defined as

Bias(h) = |Pr[h = 1] − Pr[h = −1]|.

4

Substituting this in (3) we get

Pr[C ′(x1, x2, . . . , xk) = h(f(x1), f(x2), . . . , f(xk))] ≤
1

2
+

1

2
[ER[Bias(h|R)]] + kδ.

If f is balanced on H then the distribution of R is that of a random restriction with parameter
ρ = µ(H). By the Hardcore Lemma f can be no more than δ away from balanced on H. By
tweaking the parameters of the Hardcore Lemma a bit we can make sure f is perfectly balanced on
H. Since we assumed f is balanced on the whole universe of inputs, this implies that f is balanced
on H. The above analysis thus gives the following lemma.

Lemma 3. If f is balanced and ǫ-hard for circuits of size at most s then g = h ◦ f⊗k is ǫ′-hard for

circuits of size at most s′, where ǫ′ = 1
2 − 1

2ER[Bias(h|R)]] − kδ and s′ = Ω(δ2

log(1/(δǫ)))s − size(h)
and where R is a random restriction with parameter ρ ≥ ǫ.

For h equal to the XOR, we have that ER[Bias(h|R)] = (1 − ρ)k ≤ (1 − ǫ)k. This instantion of
Lemma 3 gives the XOR Amplication Lemma modulo some slight loss in parameters.

The above method does not apply to NP in general since the aggregated function might not be
in NP. In particular, it does not apply in case of the XOR as the aggregation function. However,
the aggregator function preserves membership in NP if it is monotone and in NP. More precisely,
if h ∈ NP and monotone and f ∈ NP then

g = h ◦ f⊗k ∈ NP.

We leave this as an exercise to the reader.

5 Connection with Noise Sensitivity

We want ǫ′ in Lemma 3 to be as close to 1
2 as possible. Alternatively, we want 1

2 ER[|h|R|] to be
small. The connection to Harmonic Analysis comes from the following relation

Bias(h|R) = |ĥ|R(∅)|.

We also have the following

ER[|ĥ|R(∅)|] ≥ ER[(ĥ|R(∅))2]

and that

ER[|ĥ|R(∅)|] ≤

√
ER[(ĥ|R(∅))2], (4)

where we have use the fact that E[X2] ≥ E[X]2.
We will see next time that the right-hand side of (4) is related to the noise sensitivity of h. The

precise relation is

ER[(ĥ|R(∅))2] = 1 − 2NSρ/2(h),

where ρ is the restriction parameter. Due to this relationship our task reduces to finding a monotone
h ∈ NP that has large noise sensitivity. This will be the topic for the next lecture.

5

