
CS 880: Advanced Complexity Theory 2/29/2008

Lecture 15: Hardness Amplification within NP

Instructor: Dieter van Melkebeek Scribe: Priyananda Shenoy

In the last lecture, we introduced the general idea of boosting the hardness of a function by
taking k independent copies of the function and aggregating them using another function h. We
obtained the following result:

Lemma 1. If f is balanced and ǫ-hard for circuits of size at most s, then g = h ◦ f⊗k is ǫ′-hard

for circuits of size at most s′ where ǫ′ = 1
2 − 1

2ER[|ĥ|R(∅)|] − kδ, s′ = Ω
(

δ2

log 1
δǫ

)
s − size(h), and R

is a random restriction with parameter ρ ≥ ǫ.

Our goal here is to find a suitable h, which boosts a “slightly average-case hard” function (i.e.,
with hardness ǫ = Ω(1/poly(n))) to a function g ∈ NP which is close to 1

2 -hard. We need h to have
the following properties:

• The expected bias of h must be small for ǫ′ to be as close to 1
2 as possible. This implies that

h must be balanced or close to balanced. Indeed, if h is unbalanced and f is, then g can be
predicted with nontrivial advantage.

• size(h) must not be too large.

• h must be in NP.

• h must be monotone.

Since the absolute value in the expected bias expression makes it hard to compute directly, we
make use of the following bounds in our analysis:

(∗)︷ ︸︸ ︷
ER

[(
ĥ|R(∅)

)2
]
≤ ER

[∣∣∣ĥ|R(∅)
∣∣∣
]
≤
√

ER

[(
ĥ|R(∅)

)2
]
.

Note that the right-hand side is the square root of the left-hand side.
Using the analysis from Lecture 9, we obtain the following expression for (∗):

ER

[(
ĥ|R(∅)

)2
]

= EI


∑

S⊆I

(
ĥ(S)

)2




=
∑

S⊆[n]

Pr[S ⊆ I](ĥ(S))2

=
∑

S⊆[n]

(1 − ρ)|S|(ĥ(S))2.

1

We get the last equality from the fact that for any element, the probability that it is in I is (1− ρ).
For a set S to be a subset of I, all its elements must be in I. Since the elements are independent,
the probability of all the elements of S being in I is (1 − ρ)|S|.

From the result obtained in Lecture 6, Section 3, the noise sensitivity of h can be written as

NSǫ(h) =
1

2
− 1

2

∑

S⊆[n]

(1 − 2ǫ)|S|(ĥ(S))2.

Using this we can relate (∗) and the noise sensitivity as

ER

[(
ĥ|R(∅)

)2
]

= 1 − 2NS ρ
2
(h).

So for hardness amplification, we need a balanced (or almost balanced) monotone h with noise
sensitivity as large as possible. Let us look at some properties of the noise sensitivity:

• For any function h, NS0(h) = 0.

• For any balanced function h, NS 1
2
(h) = 1

2 .

• For any function h, NS1(h) = Pr[h(x) 6= h(−x)], which is 0 if h is even and 1 if h is odd.

• For an odd function h, NS1−ǫ(h) = 1 − NSǫ(h).

• For any nonconstant function h, NSǫ(h) strictly increases between ǫ = 0 and ǫ = 1
2 .

Using the last property, since ρ ≥ ǫ, NS ρ
2
(h) ≥ NS ǫ

2
(h). Substituting this in the expression for ǫ′

in Lemma 1, we get

ǫ′ ≥ 1

2
− 1

2

√
1 − 2NS ǫ

2
(h) − kδ.

We now examine some monotone functions in NP as candidates for h, and analyze their noise
sensitivity.

1 Noise sensitivity of monotone functions

1.1 Majority

As seen earlier, the Majority function is defined as

MAJn(x) = sign(

n∑

i=1

xi).

Majority is balanced and monotone, so it is a feasible candidate for our purposes. But the following
fact shows that it has low noise sensitivity and hence is not useful for hardness amplification.

Proposition 1. NSǫ(MAJn) = O(
√

ǫ).

2

Proof. (Sketch) We obtain y by flipping each of the n bits of x with probability ǫ. Let F be the
set of bits which got flipped, therefore |F | is roughly (n · ǫ). The question is whether flipping the
bits in F changed the majority, i.e., sign(

∑
i/∈F xi +

∑
i∈F xi) 6= sign(

∑
i/∈F xi −

∑
i∈F xi). Since∑

i/∈F xi+
∑

i∈F xi =
∑n

i=1 xi, this is the same as asking sign(
∑n

i=1 xi) 6= sign(
∑n

i=1 xi−2
∑

i∈F xi).
The term

∑
i∈F xi is close to normally distributed, with mean 0 and standard deviation

√
nǫ. Hence

with high probability its absolute value is O(
√

nǫ). In that case, switching from x to y means
subtracting a term of size O(

√
nǫ) from x. The majority of y will be different only if the value of∑n

i=1 xi was close enough to 0 that subtracting the new term results in a sign change. The weight
of xi’s which are atmost O(

√
nǫ)-far from balanced is O(

√
nǫ · 1√

n
) = O(

√
ǫ).

Since we usually take ǫ to be 1
nO(1) , this isn’t good enough to boost the hardness to a value close

to 1
2 .

1.2 Recursive Majority

Although simple Majority doesn’t have give us the necessary hardness boosting, Recursive Majority

does work.

Definition 1. The Recursive Majority function at the (d + 1)th level is defined recursively as

REC-MAJ3d+1 = MAJ3 ◦ REC-MAJ⊗3
3d ,

where MAJ3 is the simple Majority function with 3 inputs.

MAJMAJMAJ

MAJ

MAJMAJ

x

MAJ

x

d levels

.

. .
 .

. .
 . . .
 .

x. . .

Fig 1: Recursive Majority function.

Recursive Majority is balanced and monotone. To analyze its noise sensitivity, we first analyze
the noise sensitivity of MAJ3. Since MAJ3 has 3 inputs, each of which is flipped independently
with probability ǫ, its noise sensitivity is a polynomial p(ǫ) of degree at most 3. We can determine
the coefficients using the facts that p(0) = 0, p(1

2) = 1
2 , p(1) = 1, and by observing that p(ǫ) ∼ 3

2ǫ
for ǫ → 0. The latter follows from the following observation: For small ǫ, flips of more than one
bit are of second order. There are three distinct ways in which exactly one flip can occur. Each
of those happens with probability ∼ ǫ, and flips the value of MAJ3 with (conditional) probability
1/2 (namely when the two other bits balance out). It follows that

3

p(ǫ) = ǫ3 − 3

2
ǫ2 +

3

2
ǫ

We now use this expression to get the noise sensitivity of the Recursive Majority function. The
following fact suggests a recursive approach.

Proposition 2. If f is balanced then,

NSǫ(h ◦ f⊗k) = NSNSǫ(f)(h).

Proof. The LHS can be written as

Pr[h(x1, x2, . . . , xk) 6= h(y1, y2, . . . , yk)], (1)

where the xi’s and yi’s are obtained as follows: For each 1 ≤ i ≤ k and 1 ≤ j ≤ n independently,
pick xi,j uniformly at random from {−1, 1} and set yi,j = xi,j with probability ǫ and yi,j = −xi,j

otherwise; set xi = f(xi,1, xi,2, · · · , xi,n), and yi = f(yi,1, yi,2, · · · , yi,n).
Since each xi,j is an independent random bit and f is balanced, the xi’s are independent random

bits. Moreover, for any fixed i, the probability that xi 6= yi equals the probability that f(x) 6= f(y),
where x is uniform over {−1, 1}n and y ∼ǫ x. The latter probability equals NSǫ(f) by the definition
of noise sensitivity. Thus, we can generate the distribution of the xi’s and yi’s by picking each xi

uniformly at random and picking yi ∼NSǫ(f) xi. Under that distribution, (1) is nothing else than
the noise sensitivity of h at NSǫ(f), i.e., the RHS of the proposition.

Using this proposition, we obtain the following expression for the noise sensitivity of Recursive
Majority:

NSǫ(REC-MAJ3d) = p(◦d)(ǫ),

where p(◦d) denotes the dth iterate of p. Since p(ǫ) = NSǫ(MAJ3) is increasing on [0, 1] and, MAJ3

being odd, p(1 − ǫ) = NS1−ǫ(MAJ3) = 1 − NSǫ(MAJ3) for ǫ ∈ [0, 1
2], this means that 1

2 is the

only attractive fixed point of p. Thus, for values of ǫ ∈ (0, 1
2), p(◦d)(ǫ) increases monotonically to 1

2
when d increases. To get a bound on how large d needs to be, we analyze how fast the convergence
happens.

For small values of ǫ, we can neglect the higher order terms and approximate p(ǫ) ≈ 3
2ǫ, so

we get p(◦d)(ǫ) ≈
(

3
2

)d
ǫ. This approximation is accurate as long as p(◦d)(ǫ) remains close to 0,

say as long as (3
2)dǫ ≤ ǫ0 for some positive constant ǫ0. For ǫ close to 1

2 , we can use a different
approximation by tracking the distance from 1

2 , which we will denote by η = 1
2 − ǫ. For small

values of η, we can use the approximation 1
2 − p(1

2 − η) ≈ 3
4η, so 1

2 − p⊗d(1
2 − η) ≈

(
3
4

)d
η. This

approximation is accurate as soon as η ≤ η0, where η0 is some positive constant. Since ǫ0 and η0

are constants, we can bridge the range between ǫ = ǫ0 and ǫ = 1
2 − η0 using a constant number of

iterations of p. As a result,

d = Θ̃

(
log 3

2

(
1

ǫ

)
+ log 4

3

(
1

η

))

suffices to make sure p(◦d)(ǫ) ≥ 1
2 − η, or equivalently, NSǫ(REC-MAJ3d) ≥ 1

2 − η.
We would like to express the resulting hardness of the function g = (REC-MAJ3d ◦ f⊗k) as a

function of its input size m = k · n = 3d · n. Using the bound on d obtained above, we get:

m =

((
1

ǫ

)log 3
2

3

·
(

1

η

)log 4
3

3
)eΘ(1)

.

4

As a result, for ǫ = 1
nΘ(1) , we can make g to be ǫ′-hard where ǫ′ = 1

2 − 1
mα for some constant α > 0.

In other words, we are able to boost the average-case hardness from inverse polynomial to some
fixed polynomial level. Since Recursive Majority is monotone and in NP, this way we can achieve
average-case hardness Hg(m) ≥ mα for some function g ∈ NP assuming there exists a function
f ∈ NP such that every polynomial-size circuit has to err on at least an inverse polynomial fraction
of the inputs in computing f .

1.3 Tribes function

As seen in Lectures 1 and 2, the Tribes function is monotone and almost balanced. The following
fact, which we will prove in Homework 2, gives a bound on the noise sensitivity of the Tribes
function.

Proposition 3. For any fixed ǫ, NSǫ(TRIBESk) = 1
2 − 1

kΩ(1) .

As a result, using the Tribes function as the aggregator, we can boost the average-case hard-
ness from some constant level to 1

2 − 1
mβ for some β > 0. We can use the REC-MAJ function

described above to boost inversely polynomial hardness to the required constant level, and then
apply the Tribes function to further boost the hardness. Further analysis shows that β > α, i.e., the
Tribes function can bring us further in terms of hardness amplification than the Recursive Majority
function.

While this is a good improvement, we would like to have the hardness even closer to 1
2 . Ideally

we would like to have hardness to be linear-exponentially close to 1
2 . We will first examine if this

is possible at all using our approach based on balanced monotone functions.

2 Bounds on the noise sensitivity of monotone functions

We know from Lecture 5 that for a monotone function the individual influences are given by
Ii(h) = ĥ({i}). For balanced functions we showed in Homework 1 that I =

∑k
i=1 Ii ≥ 1, which

implies that
∑k

i=1 I2
i ≥ 1

k . For such functions the noise sensitivity satisfies:

NS ǫ
2
(h) =

1

2
− 1

2

∑

S⊆[k]

(1 − ǫ)|S|(ĥ(S))2

≤ 1

2
− 1

2
(1 − ǫ)

k∑

i=1

I2
i

≤ 1

2
− Ω

(
1

k

)

If k is polynomial in n, then the best we can achieve is polynomial closeness to 1
2 . To get

exponentially closer, we need to make k exponential in n. We cannot directly do this because of
the following problems:

1. The input length m = k · n no longer remains polynomial in n. This is no good because the
hardness of the original function f holds with respect to circuits whose size is bounded by
some function s(n), whereas the hardness of the original function should hold for circuits of
sufficiently large size s′(m), and we always have s′(m) < s(n).

5

2. We need to evaluate f k times, which cannot be done in polynomial time if k is super-
polynomial in n.

We can resolve the first issue by using derandomization. Instead of generating k · n truly
random bits, we can use a pseudorandom generator to produce k · n pseudorandom bits from few
truly random bits. There exist such pseudorandom generators with seed length O(n

3
2), resulting

in an input length for g of m = O(n
3
2).

We can resolve the second issue using nondeterminism and the Tribes function. Instead of
evaluating f on all k copies, we can non nondeterministically guess which tribe is satisfied and
evaluate only the copies of f that are involved in the tribe. This requires evaluating f only about
log k times.

Using this approach we can boost hardness within NP from 1
nO(1) to 1

2 − 1

2Ω(m2/3)
. Whether we

can boost it to 1
2 − 1

2Ω(m) is still an open question.

6

