
CS 880: Advanced Complexity Theory 3/3/2008

Lecture 16: Noise Sensitivity of Majority

Instructor: Dieter van Melkebeek Scribe: Chi Man Liu

In the first part of this lecture, we analyze the noise sensitivity of the Majority function in
more detail than last time. In the second part, we discuss the Majority is Stablest theorem, which
says that among balanced functions for which each of the individual variables has low influence,
the Majority function has the lowest noise sensitivity up to some small error. We also see some
applications of this theorem in social choice theory.

1 Noise Sensitivity of Majority

In this section we derive a good approximation for the noise sensitivity of the Majority function. Let
MAJn denote Majority on n variables. We do not care about the outputs of MAJn on inputs with
an equal number of -1’s and 1’s as the effect will be absorbed by an error term. In our analysis, we
replace some distributions in the original problem by normal distributions. The reduced problem
turns out to have a nice geometric structure and can be solved more easily. All we lose in the
reduction is a small additive error term. We start by writing the noise sensitivity of Majority in
the following form.
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The second equality follows from the independence between xi and xj for i 6= j, and the fact that
E[xi] = 0. The last equality follows from |xi| = 1.

However, the two distributions are not independent. If we compute the correlation between
them, we get
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E[xiyi] = ǫ·(−1)+(1−ǫ)·1 = 1−2ǫ.

The second equality holds because the cross terms (E[xiyj], i 6= j) evaluate to zero. The fourth
equality follows from the definition of y: yi 6= xi independently with probability ǫ.
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Instead of analyzing the original distributions, we analyze two correlated normal distributions
X and Y , and claim that the probability of X and Y having different signs equals the probability
of the original distributions having different signs up to some small error. We want the original
distributions and the normal distributions to behave similarly. In particular, X and Y should
have a correlation of 1 − 2ǫ. To simplify calculation, we can write Y as a linear combination of
two normal distributions. Formally, let X and Z be independent normal random variables. Let
Y = (1 − 2ǫ)X +

√
1 − (1 − 2ǫ)2Z = (1 − 2ǫ)X + 2

√
ǫ(1 − ǫ)Z. It can be verified that Y is also

normal and the correlation between X and Y is 1 − 2ǫ. We will see that Pr[sgn(X) 6= sgn(Y )]
approximates the quantity in (2). As n tends to infinity, the error becomes negligibly small. We
will state the error term without proof at the end.

X

Z

Y

(2
√

ǫ(1 − ǫ),−(1 − 2ǫ))

Figure 1: Y is a linear function of X and Z.

Let us compute the probability of X and Y having different signs.

Pr[sgn(X) 6= sgn(Y )] = Pr[X ≥ 0 and Y < 0] + Pr[X < 0 and Y ≥ 0] (3)

= 2Pr[X ≥ 0 and Y < 0]. (4)

The last inequality holds by symmetry. We can find out Pr[X ≥ 0 and Y < 0] geometrically.
Recall that Y is a linear function of X and Z. Figure 1 shows the linear relationship between
X, Z and Y . The shaded region in Figure 1 represents the inequalities X ≥ 0 and Y < 0. So
Pr[X ≥ 0 and Y < 0] is equal to the measure of the shaded region under the joint distribution of X
and Z. Since X and Z are independent normal distributions, their joint distribution is symmetric
around the origin. Therefore, the measure of the shaded region is θ

2π , where cos θ = 1 − 2ǫ. With
this we can determine the quantity in Equation (3):

Pr[sgn(X) 6= sgn(Y )] = 2 · θ

2π
=

θ

π
=

arccos(1 − 2ǫ)

π
. (5)

Also, by writing cos θ = 1 − 2 sin2(θ/2) = 1 − 2ǫ, we have

Pr[sgn(X) 6= sgn(Y )] =
2

π
arcsin(

√
ǫ). (6)
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From (5) we get the following theorem. Since the original distributions only converges to normal,
we need an error term, which we state without proof.

Theorem 1. Let MAJn denote the Majority function in n variables. (The output can be either
way if there is an equal number of 1’s and -1’s.) Then,

NSǫ(MAJn) =
arccos(1 − 2ǫ)

π
± O

(
1√
nǫ

)
.

If ǫ is small, then arcsin ǫ ≈ ǫ. Theorem 1 and (6) give the following corollary.

Corollary 1.

NSǫ(MAJn) ∼ 2

π

√
ǫ.

2 Majority is Stablest

In this section we cover the Majority is Stablest theorem, which says that the Majority function
is stablest in the sense that it has the lowest noise sensitivity among balanced Boolean functions
for which individual variables have low influences. A stronger version of this theorem says that
this also holds if we consider all balanced functions from {−1, 1}n to [−1, 1]. We will need this
stronger result later so we state it here. Before doing so, we need to generalize the definitions of
balancedness and influence to functions f : {−1, 1}n → [−1, 1].

• f is balanced if Ex[f(x)] = 0.

• Define the influence of the ith variable to be

Ii(f) = Ex

[
σ2(f |x,i)

]
, (7)

where f |x,i is the restriction of f obtained by fixing all variables except the ith according to x.
When f is Boolean, this new definition coincides with our old definition Ii(f) = Pr[f(x) 6=
f(x(i))]. It can be shown that (7) equals ||Dif ||2 (and E[(Dif)2] in the Boolean case). By
Parseval’s equality, this is equal to

∑
S∋i(f̂(S))2.

We state the following theorem without proof.

Theorem 2. Let f be a function from {−1, 1}n to [−1, 1] with E[f ] = 0 such that Ii(f) ≤ τ for all
i ∈ [n]. Then, for any 0 < ǫ < 1

2 ,

NSǫ(f) ≥ 1

π
arccos(1 − 2ǫ) − O
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1

ǫ
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τ

log 1
τ

)
.

If we compare Theorem 2 and Theorem 1, we see that Majority is indeed the stablest up to a
small error term. We can strengthen the theorem a little bit by bounding the Fourier weight of
subsets of size at most log(1/τ).
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Theorem 3 (Majority is Stablest Theorem). Let f be a function from {−1, 1}n to [−1, 1] with
E[f ] = 0 such that for all i ∈ [n],

∑

S∋i
|S|≤log(1/τ)

(
f̂(S)

)2
≤ τ.

Then, for any 0 < ǫ < 1
2 ,
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π
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1

ǫ
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τ

log 1
τ

)
.

Remark: The proof of Theorem 3 is similar to what we did in the proof of Theorem 1. We
approximate the original distributions with normal distributions and argue that the error is small.
Then the problem becomes one with nice geometric structure which can be solved exactly.

2.1 Reverse Majority is Stablest Theorem

In general, the probability of flipping a variable could be any 0 < ǫ < 1. However, in Theorem 3
we require ǫ to be less than 1

2 . What happens if we allow ǫ to lie in the other half, i.e., 1
2 < ǫ < 1?

It turns out that the inequality turns around. Formally, we have the following theorem. Note that
we no longer require the function to be balanced.

Theorem 4 (Reverse Majority is Stablest Theorem). Let f be a function from {−1, 1}n to [−1, 1]
such that for all i ∈ [n], ∑

S∋i
|S|≤log(1/τ)

(
f̂(S)

)2
≤ τ.

Then, for any 1
2 < ǫ < 1,

NSǫ(f) ≤ 1

π
arccos(1 − 2ǫ) + O

(
1

1 − ǫ
· log log 1

τ

log 1
τ

)
.

Proof. Let 1
2 < ǫ < 1. We first assume that f is odd, i.e. f(−x) = −f(x). In that case, we argued

last lecture that
NS1−ǫ(f) = 1 − NSǫ(f). (8)

Also note that

1

π
arccos(1 − 2(1 − ǫ)) =

1

π
arccos(−(1 − 2ǫ)) (9)

= 1 − 1

π
arccos(1 − 2ǫ). (10)
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Since 0 < 1 − ǫ < 1
2 , and every odd function is balanced, we can apply Theorem 3. We get

NS1−ǫ(f) ≥ 1

π
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(
1

1 − ǫ
· log log 1

τ

log 1
τ

)
(11)

1 − NSǫ(f) ≥ 1 − 1
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NSǫ(f) ≤ 1

π
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)
. (13)

In the above, (12) follows from (8) and (10).
We have proved the theorem for odd f . For general f , let fodd be the odd part of f , i.e.,

fodd =
∑

|S| odd f̂(S)χS . We claim that NSǫ(f) ≤ NSǫ(fodd). To prove this, recall that NSǫ(f) =
1
2− 1

2

∑
S(1−2ǫ)|S|(f̂(S))2. If we drop all the terms with even |S|, we get NSǫ(fodd). For these terms,

(1−2ǫ)|S| is positive, thus proving our claim. We still need to argue that fodd(x) ∈ [−1, 1] and that
fodd satisfies the low influence condition. The former follows because fodd(x) = (f(x) − f(−x))/2,

and the latter because for each S ⊆ [n], f̂odd(S) ≤ f̂(S). This concludes our proof.

2.2 Applications in Social Choice Theory

In this section, we look at some applications of the Majority is Stablest theorem in social choice
theory.

2.2.1 Two Candidate Elections

Recall that an election with two candidates and n voters can be modeled as a function f :
{−1, 1}n → {−1, 1} where the candidates are labeled -1 and 1 respectively, x ∈ {−1, 1}n indi-
cates the preferences of voters, and f(x) gives the result of the election given preferences x. We
also assume an “impartial culture” (IC), i.e., the preferences of voters are independently and uni-
formly distributed. The Majority is Stablest theorem implies that among all fair (balanced) election
systems in which individual voters have small influences, the Majority election system is the stablest
against random noise in the input, provided the noise is not so great that input bits get flipped by
default, and up to low order terms.

2.2.2 Three Candidate Elections

In lecture 12 we looked at elections with three or more candidates. We discussed the Condorcet
method in which each voter ranks all of the candidates. An aggregate function f is applied to each
pair of candidates to determine the winner. The hope is that this gives a ranking of the candidates.
Condorcet’s Paradox shows that this procedure fails if f is the majority function even when there
are only three candidates and three voters. Arrow’s theorem tells us that the only functions that
always maintain rationality are dictators and anti-dictators. However, dictators and anti-dictators
are not very useful in reality – Majority would be a more common choice. The reason is that when
seeking a good voting scheme, we want the influences of individual voters to be small. Given this
restriction, Majority turns out to be the best choice, in the sense that it has the highest probability
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of maintaining rationality under the IC assumption. Let f be any Boolean function. Define the
rationality of f as

RATIONALITY (f) = Pr[aggregate graph has no cycle]

= Pr x,y,z
s.t.(∀i)¬(xi=yi=zi)

[¬(f(x) = f(y) = f(z))].

Using Problem 2 of Homework 1, we get

RATIONALITY (f) =
3

4
+

1

4

∑
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3

)|S|−1

(f̂(S))3 =
3

2
NS2/3(f).

If we require that f has small individual influences, then by the Reverse Majority is Stablest
theorem, the above quantity is maximized (up to small error) when f is Majority. Formally, we
have the following theorem.

Theorem 5. If f is a Boolean function satisfying Ii(f) ≤ τ for all i ∈ [n], then

RATIONALITY (f) ≤ RATIONALITY (MAJn) + O

(
log log 1

τ

log 1
τ

)
+ O

(
1√
n

)
.

3 Next Time

Next time we will see hardness of approximation results based on harmonic analysis. We will discuss
the maximum satisfiability problem, the maximum cut problem and the vertex cover problem. The
Reverse Majority is Stablest Theorem will play a role in the hardness result for maximum cut.

6


