CS 880: Advanced Complexity Theory 3/5/2008

Lecture 17: Hardness of Approximation

Instructor: Dieter van Melkebeek Scribe: David Malec

In this and the next few lectures we revisit the PCP Theorem with the aim of establishing tight
inapproximability results for some natural NP-hard optimization problems. Earlier, we discussed
the use of harmonic analysis in the derivation of the PCP Theorem. More specifically, in lecture
5 we devised tests for the Hadamard code and the long code, which play a critical role in the
construction of PCPs. In order to obtain the tight inapproximability results we aim for, we will
need to delve again into the harmonic analysis underlying the PCP Theorem.

1 Inapproximability Results

In order to demonstrate inapproximability results, we can view a PCP as a game, where the prover
is trying to maximize the probability that its purported proof is accepted. The idea then is to
reduce the optimization of this game to natural optimization problems. As long as our reductions
preserve the gap between the completeness and soundness conditions of the PCP, we can conclude
that surpassing some approximation threshold is as hard as distinguishing between the two cases
of the PCP Theorem, which is NP-hard.

The next few lectures develop tight inapproximability results for several problems along these
lines. In some cases we need the PCP games to have some more struture for the reduction to
work, namely that of so-called unique games. As a result, we can only conclude that certain
approximation factors are UG-hard rather than NP-hard to realize, where UG refers to Unique
Games. The problems which we consider are the following.

MAX-3-SAT: Here, we are given a 3-CNF formula ¢, and want to find an assignment of variables
which maximizes the number of simultaneously satisfied clauses in ¢. If we know that each
clause contains exactly three literals, all distinct, then we can find a 7/8-approximation by
making a random assignment to the variables; the constant follows since only one of the
eight possible assignments to any given clause fails to satisfy it, and our assumption that
all literals are distinct ensures that independent assignments to the variables make each of
these outcomes equally likely. The algorithm can easily be derandomized. If we don’t have
exactly three distinct literals in each clause, we can still effect this result, but it requires more
machinery. Despite the simplicity of achieving this 7/8-approximation, we show that finding
a (7/8 + €)-approximation to MAX-3-SAT is NP-Hard, even when all the clauses contain
exactly three distinct literals.

MAX-3-LIN: In this problem, we are given a linear system of equations over GF(2), where
each equation contains three variables, and we are asked to find a setting of the variables
maximizing the number of satisfied equations. Using random assignment gives us a 1/2-
approximation, since each nontrivial linear equation over GF(2) is equally likely to be satisfied
or not under a random assignment. Once again, this type of algorithm yields the best possible
approximation in some sense, since achieving a factor of (1/2 + €) is NP-hard.

MAX-CUT: This problem asks for the maximum cut of agraph, where the value of a cut is the
sum of the weights of the edges crossing it. While not simple, an algorithm exists which yields
an p-approximation for p ~ .878. In fact, finding a (p + €)-approximation is UG-hard for any
constant € > 0. While the constant p in this result might seem surprising, there is a geometric
interpretation which gives some intuition as to how it arises; another way of interpreting it
comes from its relation to the noise sensitivity of Majority.

VERTEX-COVER: This problem asks us to find a minimal vertex cover for a graph. A trivial
algorithm exists which gives a 2-approximation; finding a (2 — €)-approximation, however, is
UG-Hard.

Note that the inapproximability results we give for MAX-CUT and VERTEX-COVER have
stronger conditions, namely that the so-called Unique Games Conjecture holds rather than just
that P # NP.

2 PCPs and Constraint Graph Games

In order to derive our inapproximability results we use a reduction from PCPs to constraint graph
games.

2.1 Basic Definitions

Before addressing the reduction itself, we first review the PCP Theorem, and present the definition
of a constraint graph game (CGG).

Theorem 1 (PCP Theorem). There exists a polynomial-time function f : 3-CNF — 3-CNF, and
a constant 0 < p < 1 such that for all ¢ € 3-CNF:

¢ € SAT = MAX-SAT(f(¢)) = 1; and
0 ¢ SAT = MAX-SAT(f(9)) < p,

where we use MAX-SAT(f(¢)) to indicate the mazimum percentage of clauses in f(p) which may
be stmultaneously satisfied.

We do not go into details of the PCP theorem here; we simply apply the result. We need one
more component before we can proceed with our reduction — specifically, we need the notion of a
constraint graph game, which we now define.

Definition 1. A constraint graph game G is specified as G = (L, R, E,[l],[r],C), where: LUR
form the nodes of a bipartite graph with edges E C L x R; [l] and [r] are sets of labels that may be
applied to the nodes in L and R, respectively; and

C:E—{c:[l] x[r] —{0,1}}
maps each edge e = (u,v) to a constraint c. on the labels of u and v.

Given a constraint graph game G, we use v(G) to denote the maximum fractions of the con-
straints c. on G that may be simultaneously satisfied by assignments of labels from [I] to the vertices
in L, and labels from [r] to the vertices in R. There are two special types of constraint graph games
that prove to be of particular interest to us. Their definitions are as follows.

Function-Type: The constraints can be derived from a function on the labels [I]; that is to say,
dme : [I] — [r] such that c.(i,7) =1 < j = 7.(3), (1)
where we use the notation 7. to indicate that we view this as a projection.

Unique-Type: This is a further specialization of function-type constraint graph games; the con-
dition here is the same as (1), with the exception that we further require that 7. be a
permutation. In particular, this requires [= r.

L R
G

Figure 1: Example of a constraint graph game. Here, ¢, enforces the constraint on the edge
e = (u,v), and v and v have labels drawn from [l] and [r], respectively.

2.2 Reduction from PCPs to CGGs

Our basic procedure for obtaining inapproximability results is to reduce a PCP to a constraint
graph game G; one critical point is that our reduction must be gap-preserving.

Given an f and p as described in Theorem 1, and any 3-CNF ¢, we construct a constraint graph
game G = (L, R, E,[l],[r],C) as follows. We form the nodes and edges

L = {Clauses of f(¢)},
R = {Variables of f(¢)}, and

E ={(u,v) € L x R: clause u contains the variable v}.

Our labels for L represent all possible assignments to the variables of the corresponding clause that
satisfy that clause. Since a clause with at most 3 literals can have at most 7 distinct satisfying
assignments to the variables involved, this means we can set [= 7. Note that there are no labels
that correspond to assignments that falsify the clause. The labels for R represent the possible
truth values of the corresponding variable, so we set » = 2. Lastly, for each edge e = (u,v), the
constraint ¢, represents a check for consistency between the values assigned to v and v, namely
that the satisfying assignment determined by the label of u sets the variable v according to v’s
label. Note that the constraint graph game we have constructed is of function-type, as the label
of u dictates the assignment to each of the variables in the corresponding clause, and therefore the
label of each v connected to wu.

Under this reduction, we get that

¢ € SAT = v(G) =1 (2)
o & SAT = v(G) < s, (3)

where s = p+ (1 — p) - 2/3 is a constant less than 1.

We can see that (2) follows because a satisfying assignment to f(¢) induces a labeling G that
satisfies all constraints. Condition (3) follows since any assignment to the variables of f(¢) has
to violate at least a fraction 1 — p) of f(¢). This means that for every labeling of R there has to
be a fraction at least 1 — p of L whose label (which always satisfies the corresponding clause) is
inconsistent with at least one of the at most three variables it is connected to.

2.3 Strong PCP Theorem

In order to obtain our tight inapproximability results, we need to boost the soundness level in (3).
A natural approach is to repeat the game for multiple trials. If we wish to preserve our overall
game as being a constraint graph game, however, we cannot perform sequential trials. Instead, we
perform repeated trials in parallel, i.e., both players get the inputs for all trials at once. While it
is not obvious that this works as a method for boosting soundness, it does. This is the contents of
the Parallel Repetition Theorem.

Theorem 2 (Parallel Repetition Theorem). For any s < 1, I, and r, there exists s' < 1 such that
for each integer k > 1,

v(GF) < (s)F,
where we use G* to denote the k-fold parallel repetition of G.

Now, since G is the k-fold parallel repetition of G, our label sets for G* are [[¥] and [r¥]. If we
want the soundness level to be v or better, we need that

(s <,

k> logy (%) | ()

We can see that satisfying (4) tightly gives us the bound

or equivalently that

ko k 1

b s poly(v)’ ©)
One point of note is that Theorem 2 maintains the function-type property on constraint graph
games; so our game retains this property. Combining Theorem 2 with Theorem 1 (and the bound
(5)) allows us to make the following stronger formulation of the PCP Theorem, which incorporates
our reduction.

Theorem 3 (Strong PCP Theorem). For any constant vy > 0, there exist [,r < such that

there is a reduction f : 3-CNF — C'GG using that [,r such that for all ¢:

¢ € SAT = v(f(¢)) =1; and
¢ ¢ SAT = v(f(¢)) <.

1
poly(v)

3 Reduction to MAX-3-LIN

Throughout the following discussion, we work with a slight variation on the version of MAX-3-LIN
previously mentioned; since we want to work over {—1, 1} instead of over {0,1}, our equations go
from having the form = + y + z = b, where b € {0, 1}, to having the form

xyz = £1. (6)

In order to reduce a constraint graph game G to a system of equations having the form (6),
we look at the long code of the labels which get assigned to the vertices of G, and then test for
properties that these encodings must satisfy. If we develop a tester whose acceptance condition
can be expressed as an equation of the form (6), then we may generate our system of equations to
correspond to all possible executions of our tester. At the end of Lecture 5 we developed a test
for any property of a string encoded using the long code. However, in our current situation the
property involves two strings v and v, both of which are involved in multiple properties that need
to be verified. We could have separate encodings for each (u,v) € E, but then we would need to
add consistency checks for joint encodings involving a common u. Instead, we will obviate the need
for such consistency checks by encoding the labels for all u € L and v € R individually.

The variables in our system represent the bits of the long codes of the labels of all vertices in
the graph G. We then generate the system using a tester for long codes and expressing each of the
edge conditions as a linear equation. In fact, we’ll see that we can do both tests (long code and
additional conditions) in one shot.

Consider how we can convert the edge constraints from G into linear equations. Let e = (u,v)
be an edge in E. Say we let i and j represent the labels given to vertices u and v, respectively.
Assuming f, and g, are the correct long encodings of i € [I] and j € [r], respectively, we have that

since long codes correspond to dictators. Note that f, : {0,1}} — {0,1}, and g, : {0,1}" — {0,1}.
Now, because the constraint graph game we are working with is of function type, we have that
the constraint ¢, can be expressed as

Ce : Te(1) = J. (7)

Recall that 7 : [I] — [r]; one way of interpreting this is to think of 7. as associating each index
in a string of length [with an index in a string of length r. So, if we have some y € {0,1}", we
can use this to generate an = € {0,1}! by setting position i of x to match position (i) of y. We
denote a string generated in this fashion by (y o m.). So we have that

(yo 776)1' = Yre(d) Vi € 1],
and so we may equivalently write c. as

Vy € {=1,1}", fu(y o me) = gu(y)- (8)

In the next lecture, we will use the last condition as the starting point for developing a gap-
preserving reduction from CGG to MAX-3-LIN.

