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Lecture 19: Inapproximability of Max-Cut

Instructor: Dieter van Melkebeek Scribe: Matt Anderson

Last lecture we proved that MAX-3-SAT cannot be approximated to within any constant factor
greater than % unless P = NP. We reached this result by first showing that MAX-3-LIN cannot
be approximated to within any factor greater than % unless P = NP. Both of these results are
tight in the sense that we have efficient deterministic algorithms that achieve the corresponding
approximation factors.

Our approach for MAX-3-LIN was based on a formulation of the PCP Theorem in terms of
constraint graph games (CGGs). We exploited a variation of the dictatorship test from Lecture 5
to test whether a given string satisfies any given property by probing three positions of the string’s
purported long code. By associating variables to each of the bits in the long code encodings of
the labels in the constraint graph game, we were able to transform a CGG into a system of linear
equations over three variables each, in a gap-preserving way.

In order to obtain the tight inapproximability result for MAX-3-LIN, we exploited special
properties of the dictatorship from Lecture 5 and had to massage it. Today, we first give an
alternate gap-preserving reduction to MAX-3-LIN which uses the dictatorship test in a blackbox
fashion. The advantage is that we can obtain tight inapproximability results for other interesting
problems like MAX-CUT by simply plugging in another dictatorship test. The disadvantage is that
the reduction only works starting from unique games, and therefore only gives inapproximability
results under the so-called unique games conjecture.

We first discuss the unique games conjecture and then develop the blackbox reduction.

1 The Unique Games Conjecture

Recall we have constraint graph games G = (L, R, E, [l], [r], C'), represented by a bipartite graph on
the vertex sets L and R. [I] and [r| are the sets of values we can assign to nodes in the sets L and
R, respectively. C' denotes a collection of constraints c., one for each edge e = (u,v) € E, where
Ce puts a constraint on the values assigned to u and v. Note, previously we allowed the constraints
to be of any function type. Today, we only consider unique games, where all constraints are of
permutation type. This forces [ = r since all of the constraints are permutations, i.e., c. is satisfied
iff m¢(j) = i for some permutation 7. : [l] — [r], where ¢ = val(u) denotes the label assigned to w,
and similarly j = val(v).

Remember that v(G) denotes the maximum fraction of the constraints that can be satisfied by
any assignment of values to the nodes in G. We also make use of the following quantity.

Definition 1.
v*(G) = mazimum fraction of R s.t. (Vv € R)(Ve = (u,v) € E)c. is satisfied,
where the mazimum is over all labelings of L and R.

In plain English, v*(G) is the maximum fraction, over all assignments, of nodes in R that have
all of their constraints satisfied.



As we have seen previously, the PCP theorem implies that for every constant v > 0 it is NP-
hard to distinguish between games with v(G) = 1 and v(G) < ~ for some [ and r (depending on 7).
Notice that for unique games is it easy to decide whether v(G) = 1. The algorithm is as follows.
Consider some node u and a possible label ¢ for it. Since the constraints are permutations and must
all be satisfied, there is no choice for the values on other nodes in the same connected component
as u. The label ¢ works for w if all constraints involving nodes int he connected component of
are satisfied. We try all possibilities for ¢ € [I] and see whether there is one that works. v(G) =1
iff the latter is the case for all connected components of GG. Since [ is finite, this procedure runs in
polynomial time.

In an attempt to make our distinguishing task harder, we relax the condition v(G) = 1 to
v(G) > 1 —~. This leads to the Unique Games Conjecture.

Conjecture 1 (Unique Games Conjecture). For ally > 0, there exists | > 0 such that it is NP-hard
to distinguish between unique games with that | and v(G) > 1 —~ or v(G) < 7.

This is only one version of the Unique Games Conjecture. Another statement of the conjecture
does not require it to be NP-hard to distinguish, rather that it should take more than polynomial
time to distinguish between the two cases. If P = NP, the first statement implies the second one
but possibly not the other way around. We will not bother about the difference, as we will always
construct reductions from distinguishing the two cases to the problem at hand. We refer to this
situation as the problem at hand being UG-hard.

We obtain another variation of the Unique Games Conjecture using the following lemma, which
allows us to replace the condition v(G) > 1 — v by a condition of the form v*(G) > 1 — "

Lemma 1. For all ¥ > 0 and | there exists a v > 0 such that one can transform in polynomial
time a unique game G over [l] into a unique game G’ also over [l] such that

V(@) >1—y= v (G)>1—+,
V(@) <7 = u(@) < 7.
Proving this lemma is left to the reader. It is also possible to transform a unique game G into
another unique game G’ such that all of the vertices in R are regular (they have the same degree)

while maintaining the other interesting properties. This also is left to the reader. Combining these
two transforms we can restate the Unique Games Conjecture in modified form:

Conjecture 2 (Unique Games Conjecture’). For ally > 0 there exists | > 0 such that it is NP-hard
to distinguish between unique games with that | and R regular and v*(G) > 1 —~ or v(G) < 7.

2 The Dictatorship Test

We now start the development of our generic approach for deriving UG-hardness of approximation
results, which uses a dictatorship as a blackbox. We first describe the test we used in the case of
MAX-3-LIN, and then abstract the properties we need for the generic approach to apply.

2.1 The Test Used Before

In Lecture 5, we presented a dictatorship test T3. Recall that before the final modification T}
accepted both dictators and the constant function with high probability. We made an addition to



the test to make it reject the constant function with high probability. In fact, we mentioned two
ways to do this: testing for balancedness or using self-reducibility. Last lecture we saw a third way
to reject the constant function, namely to force g(f)) = 0 by considering only the odd part of the
function and replacing g(z) with f(z) = Epei_q 13[0- f(b- 2)]. Modifying T¢ in this way:

e Dictatorship test T33:

— Pick 2,y € {~1,1}" and by, by, b, € {—1,1} uniformly at random.
— Pick z ~. x with € = 1_70‘

— Accept iff g(byz)g(byy)g(b.2) = bybyb..
Using analysis similar to the original analysis of T} one can show:
Lemma 2. Pr[T¥ accepts| = 5 + % > sci,|| g @51(9(9))3.

If g is not a Boolean function, but is instead an expectation over Boolean functions, Lemma
2 still holds. More formally, if g = E[f] over some distribution of f : {—1,1}' — {—1,1} then
Lemma 2 holds for g, where running the test on y means that whenever g needs to be evaluated
on some point z, we take an independent sample f from g and return f(z). By linearity of
expectation, the original analysis carries through. Note that we have already implicitly used this
for f(z) = Epeq_1,13[b- g(b- x)], which is a distribution over two functions.

2.2 Required Properties

Our intent is to use T}, as a black box. The strength of the inapproximability result we obtain will
depend on certain parameters of the test. Here are the properties we need for our analysis to follow
through.

e Completeness: For all a and all dictators g: Pr[T§ accepts] > c,.

Claim 1. The completeness property holds for the above test T, with ¢, = 1 — €, where
l—«
€ = 5 -

Proof. This follows since since we flip the dictator variable z; with probability e. O

e Soundness: For all a, and § > 0, there exists 7 > 0 and d > 0 such that if Pr[T} accepts] >
Sq + 0, then there exists j € [I] with Ijgd(g) > 7, where Ijgd(g) = ZSai,\S|<d(§(s))2' This
property should hold whenever g is the average of a distribution of Boolean functions on [
variables.

Claim 2. The soundness property holds for the above test T, with T = 62, d = 112511//2, and

1

Sq = 5-

Proof. 1f Pr[T4 accepts] > % + 0, then using Lemma 2 and Parseval’s equality we have

< Y alg(s)? < <max <a'Sa<s>>) S (3(5))2 < max (al515(5)).

e S| odd S oda 15| odd



This means there exists a Fourier coefficient over a set S # () with §(S) > 26. Moreover, since
3(9) <1, we have that al®l > 26, so

log1/d
logl/ac

5] <

Since |a| < 1, this also gives (§(5))? > 62 = 7. If we pick a j € S the large coefficient must
be included in the influence, which means that we have I jgd(g) >T. O

3 The Reduction

Let’s start from a unique constraint graph game G = (L, R, E, [l], [r],C), and consider a labeling
of L. As in last lecture, let the function f, : {—1,1} — {—1,1} represent the long code encoding
of val(u) for uw € L. For v € R define g,(y) as:

gv(y) = Ee:(u,v)EE[fu(y ° 7T6)]‘

Recall that yom, can be thought of as the permutation 7, applied to y, that is to say (yom.); =
Yr. (i) 1t is useful to think of f,(y o 7) as the opinion of u about what the function g, should be,
namely the dictator corresponding to the variable 7. (val(u)).

The idea behind the reduction is the following: g, is close to a dictator iff for most of the
neighbors u of v, f, is close to a dictator and for most of those dictator the dictating variable is
the same. Thus, we simply run our dictatorship test T,, on g, for a random v € R. More formally,
we consider the following test SL:

o Test Sg:

— Pick v € R at random.
— Accept iff T, on g,(y) = Ee—(uv)ep[fu(y o me)] accepts.

Note that the result of picking a random v € R at random and then a random neighbor u of v,
results in a distribution of e = (u,v) which is uniform over E. This is because R is regular.

3.1 Analysis of S/

We proceed by analyzing the completeness and soundness of SL. The completeness argument is
fairly straightforward. Remember that v*(G) is the maximum fraction of v € R with all constraints
satisfied. If v € R has all constraints satisfied, then v follows all the opinions of its neighbors in L.
This implies that all of the f, with (u,v) € E are the same dictator, so g, in turn is a dictator.
Thus, we have the following.

Claim 3. There exists an f such that Pr[S] accepts| > co - v*(G).

Proof. Consider a labeling of G realizing v*(G). For each uw € L, let f,, be the valid long code
of the label of u. By the definition of v*(G), there exists a subset R* C R of relative size v*(G)
with all constraints satisfied. For each of these v € R*, g, is a dictator thus Pr[T5" accepts] > cq.
Therefore, Pr[S accepts | > Prlv € R*] - Pr[T¢" accepts | > v*(G) - cq. O



The soundness argument is somewhat more involved.
Claim 4. If there exists an f such that Pr[Si accepts] > so + 26, then v(G) > %.

Proof. By Markov’s inequality, for a fraction at least ¢ of the v € R, Pr[T4" accepts] > sq + 6. We
call such v good. By the soundness property of T, for any good v there exists j € [I] such that
Ijgd(gv) > 7. Let us label v with such a value j.

We can upper bound the the influence of g, in terms of the influences of the f,’s for the neighbors
u of v as follows.

Ijgd(gv) = Z (QU(S))2 (1)

S37,15|<d

= Y (Bl o) Q
S537,|S|<d

< Y EJ(fu(mN(1))) (3)
S537,|S|<d

=E, Yo (ful9)? (4)

Tome ' (7),|T|<d
= BulI=%  (fu)] (5)

e ()
Line 1 follows by the definition of influence, and line 2 by the definition of g,. Note that we can use
7.1 because . is a permutation. In particular, there is no need to refer to the projection 7/, from
the last lecture, as pi;, = m so by last lecture xs(y o 7e) = X ($)(¥) = Xn.(s)(y). Line 3 follows
from Cauchy-Schwarz. Line 4 follows by setting 7' = 7~1(.9). Line 5 follows again by the definition
of influence. Together this gives us:

<d
B (F) 2 7

T

Applying Markov again we have that for a fraction at least 7 of neighbors u € L of v that
If,dl (j)( Ju) > 5. This means that a large fraction of v’s neighbors have variables with high in-

fluence. These u’s are “good” neighbors of v. Let L, = {i € [l]|IZ-Sd(fu) > %}. Notice that
|L,| < Ti/27 since

Lz < D) S Y (S <d- Y (fulS) <d

i€ Ly, |S|<d,ieS [S|<d

If we pick a value for u at random from L, then the probability that c. is satisfied for e = (u,v)

is at least ﬁ > 5. This is because v has value j so c¢(, ) is satisfied iff u gets the value Ly,
which lies in L, since since If,dl (j)( fu) = 5. Thus, the expected number of satisfied constraints is

at least

E[#{c.’s satisfied}] > Pr[v good] - Pru good for v |v good] - Pr[right value picked |u and v good]

_s. 7T _or
2 2d 4d
This directly gives v(G) > %. O



By picking the positive constant v small enough, we can make % > ~. By the soundness
property of S, (Claim 4), the former means that Pr[Sf; accepts | < so + 20. On the other hand, if
V*(G) > 1 — v, the completeness property of the test T, shows that Pr[S accepts | > co(1 — 7).

Let MAX-SAT(S,) denote the problem of computing an assignment f such that Pr[Sg accepts |
is maximized. The above shows that, if we had an approximation algorithm for MAX-SAT(S,)
that guarantees a factor of p > CZ‘EIF_Q:S/), we would be able to efficiently distinguish between the case
where v(G) < v and v*(G) > 1 —~. This is because if we run such an approximation algorithm on
an instance where v(G*) > 1 — ~, then it returns a feasible solution f that satisfies more than a
fraction p(1—-y) > s+ 20 of the test constraints, whereas on instances where v(G) < 7, no feasible
solution can satisfy that many of the test constraints. Since we can make § and « arbitrarily small,
we conclude the following.

Theorem 1. Let T, a € A, denote a family of dictatorship tests satisfying the completeness
and soundness conditions stated in Section 2.2, and S, the constraint graph game test described
at the beginning of Section 3. Let h be any optimization problem that includes all problems of the
form MAS-SAT(S,) for a € A. Then h is UG-hard to approximate to within any constant factor

p > infaeA(z_Z)'

If we plug in the test T, from Section 2, the problem MAX-SAT(S,) becomes a special case of
MAX-3-LIN. Using the parameters ¢, from Claim 1 and s, from Claim 2, we conclude that it is
UG-hard to approximate MAX-3-LIN to within any factor p > inf_1<a<1(i—z) = infoeect( 1/2) =1

T—¢ 2°

4 Next Time

The above result is actually weaker than the inapproximability we derived last lecture for MAX-3-
LIN, as we showed there that the same approximition factors are NP-hard rather than just UG-hard.
However, next lecture we will pick the fruits of the generic approach we developed this lecture. We
will see that when we plug in the noise sensitivity test for T, in Theorem 1, then the problem
MAX-SAT(S,) becomes a special case of MAX-CUT, showing that approximating MAX-CUT to
within any constant factor that is better than the current record of pgw =~ .878 is UG-hard. Thus,
we get a tight inapproximability result for MAX-CUT under the Unique Games Conjecture.



