CS 880: Advanced Complexity Theory 3/12/2008

Lecture 20: Inapproximability of Minimum Vertex Cover

Instructor: Dieter van Melkebeek Scribe: Mark Liu

Last time we examined a generic approach for inapproximability results based on the Unique
Games Conjecture. Before, we had already shown that approximating MAX-3-LIN to within a
constant factor larger than % is NP-hard. To do this we used a tweaked version of our dictatorship
test that we came up with earlier in the semester. Last time we (re)proved that approximating
MAX-3-LIN to within a constant larger than % is UG-hard. The latter is a weaker statement than
the earlier NP-hardness result, but the argument used the dictatorship test as a blackbox. In this
lecture we show that when we replace the dictatorship test by a noise sensitivity test, then we obtain
that MAX-CUT is UG-hard to approximate to within any factor larger than pgy-, where pgyw refers
to the approximation ratio achieved by the Goemans-Williamson algorithm. The numerical value
of pgw is approximately .878.

We end the lecture wiht a proof sketch that approximating MIN-VC to within any constant
factor smaller than 2 is UG-hard.

1 The Generic Approach of Last Lecture

We briefly go over the framework we saw last lecture. We start by restating the necessary properties
of the family of dictatorship tests T, a € A.

e Dictatorship test Ti5 (a € A):

— Completeness Condition: If ¢ is a dictator then Pr[T} accepts] > cq.

— Soundness Condition: For every o and § > 0 there exists 7 > 0 and d > 0 such that the
following holds for every distribution g = E,[f,] over Boolean functions f,, in [ variables:
If Pr[T§ accepts] > s, + & then there exists i € [I] with I]-Sd(g) > T

Given such a test T3, we developed the following test Sg, where f represents the purported long
encoding of the labels of the left-hand side of a constraint graph game G = (L, R, E, [l], [r],C) of
permutation type with underlying permutations 7, for e € E.

o Test Sg:

— Pick v € R at random.
— Run T3", where on g,(y) = E_w U)GE[fu(y o )] and accept iff T35" accepts.

Note that S, uses T}, as a blackbox. We established the following key properties in the case where
G is right-regular.

e Completeness: There exists an f such that Pr[S] accepts] > cq - 1*(G).

e Soundness: If there exists an f such that Pr[S{ accepts] > sq + 26, then v(G) > %.



We can view Pr[Sé accepts| as the fraction of test conditions that are satisfied by f. The com-
pleteness result for S4 implies that if v*(G) > 1 — v then MAX-SAT(S,) > co(l — 7), were
MAX-SAT(S,) is the maximum probability of acceptance of the test S, over all possible functions
f. By the soundness result, we have that if v(G) <y < % then MAX-SAT(S,) < 84 + 2. From
this we can conclude that it is UG-hard to approximate any problem that contains all problems of
the form MAX-SAT(S,) for o € A, to within a constant factor p > infaea(2).

2 Applications

We first recall teh application to MAX-3-LIN from last class and then develop the new one for
MAX-CUT.

2.1 Application to MAX-3-LIN

)

When we use the 3-query dictatorship test T, from the beginning of the course for a € (—1,1
1

then MAX-SAT(S,) becomes an instance of MAX-3-LIN. We argued that ¢, = 1 — ¢ for e = 5%,
1

and s, = 5. We conclude that approximating MAX-3-LIN to within any constant factor rho >
infae(—1,)(2*) = fracl2 is UG-hard.

2.2 Application to MAX-CUT

To achieve our MAX-CUT inapproximability result, we will replace our 3-query dictatorship test
with a 2-query noise sensitivity test defined as follows.

e Test T9:

— Pick x € {~1,1}! at random
— Pick y ~o x
— Accept iff g(z) # g(y)

Note that the conditions induced by the resulting test 5L are all of the form fu(x) # fuly) for
u,v € Land z,y € {—1,1}'. Thus, when we consider a graph H with a vertex for each combo f,(z)
and an edge (fu(x), fu(y)) for each condition f,(z) # f,(y), then MAX-SAT(S,) is equivalent to
finding a two-coloring of the vertices of H that maximizes the number of mixed edges. In other
words, MAX-SAT(S,) is equivalent to finding a maximum cut in H.

The above test is an effectivization of the notion of noise sensitivity. As a result, we have
that Pr[T§ accepts] = NS,(g). This allows us to establish the parameters ¢, and s, for which
this test meets the conditions listed at the end of Section 1. As for the completeness condition,
we can set ¢, = « since NS¢(dictator) = e. As for the soundness condition, recall the Reverse
Majority Stablest Theorem: For any g : {—1,1} — [~1,1] and all « such that % < a < 1, if for

1
all i €[], Iflog(l/ﬂ (9) < 7, then NS,(g) < 2 arccos(l — 2a) + O(ﬁloilgoif ). The contrapositive

essentially gives us the soundness condition we need to hold. Note that for any o € (%, 1) we can
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make the error term § = O( ) arbitrarily small by choosing 7 sufficiently small. Setting



—
1/ac0s(-1)'ac05(1-2"%) e
T —

Figure 1:

d= log% then gives the soundness property with s, = %arccos(l — 2a). We conclude that it is

UG-hard to approximate MAX-CUT to within any constant

L arccos(1 — 2a)

> inf . 1
g %<a<1( o ) (1)
To see the infimum visually, we plot h(z) = %arccos(l — 2a) against « in Figure 1. The infimum

is reached where a line drawn through the origin is tangent to the curve.

We claim that the right-hand side of (1) is exactly the approximation factor pgy guaranteed by
the Goemans-Williamson algorithm. To see why, we quickly review the algorithm and its analysis.
For a given graph H = (V, E), we have
1 — (zy, xy)

MAX-CUT(H) < max ) 2
( ) - Hva:Lveve:(uEv:)eE 2 ( )

where the x,’s range over all vectors in R? for unrestricted d. The problem on the right-hand side
of (2) is a semidefinite program, which can be solved in polynomial time. It is a relaxation of the
MAX-CUT problem, which is equivalent to the problem on the right-hand side with teh additional
restriction that d = 1.

Once we have an optimal solution z,, for v € V to the semidefinite program, we need to extract a
cut in H whose value is not too much worse than the right-hand side of (2). We do so by randomized
rounding: We pick a random hyperplane through the origin of R? and use it to partition V' in those
vertices v for which z,, is on one side of the hyperplane, and the others. The resulting cut in H has
the property that for any fixed edge e = (u,v) € E,

Prle = (u,v) is cut] = b arccos((xu,%})' (3)

s m

This follows from an analysis in the plane spanned by the vectors x,, and z, (see Figure 2). The
intersection of the random hyperplane with this plane is a random line through the origin. The
probability that this line separates x,, and x, equals %, where 0 is the angle between the two vectors,
ie., cos(0) = (xy,xy).



Figure 2: Probability of a Random Cut

By linearity of expectation and comparing the right-hand side of (3) with the corresponding
term on the right-hand side of (2), we have
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where the last line follows by substituting z = (x,,z,) and further relaxation. Since x, is the
optimal solution for the right-hand side of (2), we conclude that

E[# edges cut] > pew - MAX-CUT(H),

arccos(z)
pew = min < = ) (4)

—1<
1<2<1 5

where

By substituting z = 1 — 2« and observing that the minimum is reached for z > 0, the right-hand
side of (4) transforms into the right-hand side of (1), which is what we wanted to argue.

Note that the Goemans-Williamson algorithm can be derandomized to yield a deterministic
approximation pgw-approximation algorithm for MAX-CUT.

3 Minimum Vertex Cover

We now switch to another standard optimization problem — minimum vertex cover or MIN-VC for
short. The following theorem shows that approximating MIN-VC to within any constant factor
less than 2 is UG-hard.
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Figure 3: Unique Constraint Graph Games

Theorem 1. For all 6 > 0, there exists ay > 0 such that there is a reduction from unique constraint
graph games over [l] to graphs H such that the following hold:

v’ (G)>1—~ = MIN-VC(H) <
v(G) <~y = MIN-VC(H) >

We will not prove Theorem 1 in full. We only describe the underlying construction and argue
the completeness property, but not the soundness property.

Given a unique constraint graph game G = (L, R, E, [l],[r], C') we construct H as follows. The
vertices of H represent the bits of the purported long codes g, of the labels of vertices v € R. More
precisely, for each v € R and y € {—1,1}", we include a vertex representing g,(y) in H. In order
to define the edge relationship ~, we view strings in {—1,1}" as the characteristic vector of subsets
of [r]. For v,v" € R with v #v" and y,y’ € {—1,1}", we stipulate the following.

e (v,y)~ (v,y)eyny =0

e (v,y) ~ (V,y') & there exists a u € L such that e = (u,v) € E, ¢ = (u,v') € E and
yome Ny omey = 0.

Note that the first condition can be viewed as a special case of the second one for v = v’. For
v # v', the second condition involves some kind of consistency check. See Figure 4 for a visual aid.

To argue the completeness property in Theorem 1, we will think in terms of independent sets
rather than vertex covers. Recall that a set B is a vertex cover iff A = B is an independent set.
Thus, to establish the completeness property we need to exhibit an independent set of relative size
at least 3 — & whenever v*(G) > 1— 7.

Fix a labeling and a set R* C R realizing v*(G). The set R* denotes the vertices in R all
of whose incident edge constraints are met by the underlying labeling. Also, let A = {(v,y)|v €
R* and g,(y) = —1}, where g, denotes the long code of the label given to v, i.e., g,(y) = y; where
j = value(v).

Claim 1. A is an independent set of relative size at least 15—7

The claim about the relative size follows because the relative size of R* is at least 1 — and for
each v € R exactly half of the y € {—1,1}" map to -1 under the dictator g,.



For the claim of independence, consider any v € R* with label j. We have that g,(y) = —1
iff y; = —1iff j € y. Thus, if (v,y) € A and (v,y’) € A, then j € y Ny, which means that
there is no edge between (v,y) and (v,y’). In addition, consider any v/ € R* with value j' and
such that v/ # v. Let u be any common neighbor of v and v’. Since the edge constraints on
e = (u,v) and € = (u,v') are satisfied by the underlying labeling, we have that 7.1 (j) = 7" (j').
Now, if (v,y) € A then j € y so 7;1(j) € y o 7. So, if both (v,y) € A and (v',9') € A then
7o Hj) = 7,1 (j') € (yome) N (y Nme). Since this holds for all common neighbors u of v and v/,
there is no edge between (v,y) and (v',y/).

This finishes the proof of the completeness property in Theorem 1. The proof of the soundness
property is significantly more involved and we will not cover it due to lack of time.



