
CS 880: Advanced Complexity Theory 3/14/2008

Lecture 21: Small-Bias Pseudorandom Generators

Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený

Today we discuss small-bias pseudorandom generators. The goal of these generators is to fool
linear functions, i.e., characters. We present one way to construct such pseudorandom generators,
and talk about some applications of small-bias pseudorandom generators.

1 Pseudorandom Generators

We start by discussing the notion of a pseudorandom generator (PRG). Intuitively, the goal is to
take a short purely random string called the random seed of length l, apply some function Gn

to it, and obtain a longer pseudorandom string of length n. We would like Gn to be efficiently
computable.

We design PRGs to fool certain tests, meaning that the tests being fooled can distinguish
between a uniform distribution and a distribution induced by the PRG only with small probability.
We formalize that in the following definition. We use the notation x← D to indicate that x comes
from distribution D. We use Un to denote the uniform distribution.

Definition 1. A function Gn : {0, 1}l → {0, 1}n fools test T : {0, 1}n → {0, 1} to within ǫ if

|Prx←Un
[T (x)]− Prx←Gn

[T (x)]| ≤ ǫ.

Our goal is to construct efficient PRGs with small seed length that fool all linear tests. The
latter condition turns out to be equivalent to the PRG having small bias. We first introduce the
notion of bias.

2 Bias

We start with the bias of a random variable. Afterwards, we give some examples. We also define
ǫ-biased pseudorandom generators and state some of their properties.

Definition 2. Consider a random variable that has two values, say X : Ω→ {0, 1}. We define the

bias of X as Bias(X) = |Pr[X = 0]− Pr[X = 1]|.

Notice that the bias of a function depends on the underlying probability distribution of the
inputs. For example, consider the uniform distribution Un. We compute the bias of the character
χS when the input comes from the uniform distribution. We denote this by Bias(χS(Un)). It is
easy to see that Bias(χ∅(Un)) = 1 because the character corresponding to the empty set is the
constant function 1. In fact, Bias(χ∅(D)) = 1 for any distribution D. For sets S 6= ∅, we get
Bias(χS(Un)) = 0 because all the other characters are balanced and inputs come from the uniform
distribution.

We extend to notion of bias to PRGs as follows.

Definition 3. We say that a function Gn : {0, 1}l → {0, 1}n is an ǫ-biased pseudorandom generator
(PRG) if for all nonempty subsets S ⊆ [n] we have Bias(χS(Gn)) ≤ ǫ.

1



By the above observations, the requirement in Definition 3 is equivalent to the condition that
|Bias(χS(Un))−Bias(χS(Gn))| ≤ ǫ for every S ⊆ [n].

We show that the notion of a small-bias PRG coincides with the notion of a PRG fooling all
linear tests. A linear test over GF(2) entails taking the inner product of a random variable of length
n with some fixed vector a of length n.

Proposition 1. A PRG Gn fools all linear tests to within ǫ if and only if Gn is a (2ǫ)-biased PRG.

Proof. For any random variable X of length {0, 1}n and any a 6= 0 of length n, we have

Pr[〈a,X〉 = 0]− Pr[〈a,Un〉 = 0] = Pr[〈a,X〉 = 0]− 1

2

=
1

2
(Pr[〈a,X〉 = 0]− Pr[〈a,X〉 = 1]) (1)

=
1

2
E[χS(X)],

where S = {i ∈ [n] | ai = 1}. In order to get (1), we view the 1
2 from the previous line as

1
2(Pr[〈a,X〉 = 0] + Pr[〈a,X〉 = 1]). 2

We can view Bias(χS(Gn)) as |Ex←Gn
[χS(x)]| because the range of χS is {−1, 1}. We also have

Ex←Gn
[χS(x)] =

∑

x

Pr[Gn = x]χS(x). (2)

View Pr[Gn = x] as a function gn from {0, 1}n → [0, 1] that indicates the probability whether a
given string x is picked from the distribution Gn. We define a similar function un for the uniform
distribution. Now we can rewrite the right-hand side of (2) as

2nEx [gn(x)χS(x)] = 2nĝn(S), (3)

so if the bias is at most ǫ, we have

|ĝn(S)| ≤ ǫ

2n
whenever S 6= ∅. (4)

We can now compute how far is the distribution induced by the small-bias PRG Gn from
the uniform distribution. First we consider the 2-norm as our measure of distance. Notice that
ûn(∅) = 1, ûn(S) = 0 for all S 6= ∅, and ĝ(∅) = 1. We express both gn and un using a Fourier
expansion and then bound each term of the summation using (4) to get

‖gn − un‖22 = Ex

[
∑

S

|(ĝn(S)− ûn(S)) χS(x)|2
]

= Ex




∑

S 6=∅

|ĝn(S)|2


 ≤ (2n − 1)
ǫ2

22n
,

which gives us

‖gn − un‖2 ≤
ǫ

2n
·
√

2n − 1. (5)

We see that in 2-norm, the distribution produced by the small-bias PRG is not far from the
uniform distribution. We can also use (6) and properties of norms to bound

‖gn − un‖1 ≤ ‖gn − un‖2 ≤
ǫ

2n
·
√

2n − 1. (6)

This means that for any event A, |Prx←Gn
[x ∈ A]− Prx←Un

[x ∈ A]| ≤ ǫ ·
√

2n − 1.
Next, we construct one particular small-bias PRG whose seed length is logarithmic in n/ǫ.

2



3 Construction of a Small-Bias Pseudorandom Generator

Consider a string of length l both as a vector in (GF(2))l and an element of GF(2l). We use
both these representations to construct a small-bias PRG. We represent our PRG by a function
Gn : {0, 1}l × {0, 1}l → {0, 1}n that maps strings of length 2l to strings of length n. We view the
input as two vectors x and y, both of length l. To get the i-th bit of the pseudorandom sequence,
we compute 〈xi−1, y〉, the inner product of the i-th power of x in GF(2l) viewed as a vector in
(GF(2))l with a string y ∈ (GF(2))l. The values of i range from 1 to n. We show that this is indeed
a small-bias PRG.

Claim 1. The PRG we just described has bias n−1
2l .

Proof. We compute the bias of the function χS(Gn) when its input strings x and y come from
the uniform distribution. We have

Bias(χS(Gn)) =
∣∣∣Ex,y

[
χS

((
〈xi−1, y〉

)n
i=1

)]∣∣∣ (7)

=

∣∣∣∣∣Ex,y

[
∏

i∈S

(−1)〈x
i−1,y〉

]∣∣∣∣∣ (8)

=
∣∣∣Ex

[
Ey

[
(−1)〈pS (x),y〉

]]∣∣∣ (9)

≤ n− 1

2l
(10)

Equation (7) comes from the definition of bias. The argument to χS is a string of length n obtained
by the concatenation of 〈xi−1, y〉 for all i between 1 and n. We use the definition of χS to rewrite the
quantity inside of the expectation as a product, which yields (8). Now define pS(x) =

∑
i∈S xi−1.

This modification yields (9) by linearity of the inner product. When x is a root of pS(x), the
inner expectation (over y) is 1 because the exponent of (−1) in (9) is the inner product of an
all-zero vector with y, which gives zero, so (−1)〈pS (x),y〉 = 1 regardless of y. For all other x, we get
(−1)〈pS(x),y〉 = −1 and (−1)〈pS(x),y〉 = 1 with equal probability. Since pS is a nonzero polynomial
of degree at most n− 1, it has at most n− 1 roots, which makes the inner expectation evaluate to
1 for n − 1 values of x that are roots of pS, and to zero for all the other values of x, so the outer
expectation is at most (n− 1)/2l. This gives us (10).

We want the bias to be at most ǫ, so pick l ≈ log n
ǫ , which gives us a seed length of about

2 log n
ǫ . For such value of l, Gn has bias n−1

2l . 2

The number of possible seeds of the PRG we constructed is (n/ǫ)2. Thus, in order to derandom-
ize algorithms that use this PRG, we need to cycle through (n/ǫ)2 seeds. This derandomization is
efficient provided that we have an irreducible polynomial of degree l or some other representation
of GF(2l) that can be used efficiently. Irreducible polynomials over GF(2) are known for many
degrees. If we don’t know one, we can cycle through all polynomials of degree l with coefficients in
GF(2) in order to find one that is irreducible over GF(2).

Suppose we have an algorithm whose running time is t and that uses r random bits. Then we
can run the derandomized version of this algorithm using time t·

(
r
ǫ

)2
. In particular, if a randomized

algorithm runs in polynomial time, its derandomized version will also run in polynomial time.

3



4 Applications of Small-Bias Pseudorandom Generators

We mention a few applications of small-bias PRGs. Our first two applications relate to material
presented in earlier lectures. We show how to approximate Fourier coefficients using a determin-
istic algorithm, and then apply this approximation to learning various concept classes. Our third
application is in hardness of approximation. We show that the problem MAX-QE cannot be ap-
proximated within a factor of 1/2 + 1/poly or better unless P = NP.

4.1 Deterministically Approximating Fourier Coefficients

When we discussed learning, we saw sampling as a means of approximating Fourier coefficients of
a function whose Fourier spectrum is concentrated on a known small set S of subsets of [n]. We
derandomize this approximation. This will make the approximation use membership queries in
place of labeled samples.

We approximate f̂(S) = Ex←Un
[f(x)χS(x)] by Ex←Gn

[f(x)χS(x)]. We are interested in the
difference between the actual Fourier coefficient for a particular set S and our approximation. We
have

∣∣∣f̂(S)− Ex←Gn
[(f(x)χS(x)]

∣∣∣ =

∣∣∣∣∣∣
f̂(S)− Ex←Gn








∑

T⊆[n]

f̂(T )χT (x)



χS(x)





∣∣∣∣∣∣
(11)

=

∣∣∣∣∣∣
f̂(S)−

∑

T⊆[n]

f̂(T )Ex←Gn
[χS△T (x)]

∣∣∣∣∣∣
(12)

≤
∑

T⊆[n]−S

∣∣∣f̂(T )
∣∣∣ |Ex←Gn

[χS△T (x)]| (13)

≤
∑

T⊆[n]−S

∣∣∣f̂(T )
∣∣∣ · ǫ (14)

We get (11) from the Fourier expansion of f(x). We move the expectation in (11) inside and observe
that χSχT is the same as χS△T where △ denotes the symmetric difference of two sets. This yields
(12). When S = T , S△T = ∅, so the character χS△T is the constant function, and the term in the

summation in (12) with f̂(T ) for T = S cancels with the f̂(S). This observation and the triangle
inequality give us (13). Since Gn is a small-bias generator and S 6= T in (13), |Ex←Gn

[χS△T (x)]| ≤ ǫ

for all relevant T . This gives us an upper bound (14) on the error in our approximation of f̂(S)
using Gn instead of the uniform distribution in the definition of f̂(S).

If we want the upper bound in (14) to be at most δ, we pick ǫ ≤ δ/(
∑

T⊆[n]−S |f̂(T )|). Now

we cycle through all random seeds of length 2 log(n/ǫ) and get an approximation of f̂(S) within a
factor of δ in time poly(n, 1

δ ,
∑

T⊆[n] |f̂(T )|) using membership queries.

4.2 Learning

With the derandomization from the last section at hand, we can derandomize the learning algo-
rithms we saw earlier in the course. These modified algorithms learn from membership queries.

Recall that we designed learning algorithms for classes of concepts whose Fourier spectra were
concentrated on some set S of subsets of [n]. We described two ways of learning those concepts.

4



When we knew the set S exactly, we gave a learning algorithm that learned only from labeled
samples. In the case when S was unknown, we assumed a bound M on the size of S, and used a
combination of labeled samples and membership queries to learn the concepts.

First let’s focus on learning from samples. Recall that we learned a concept c by learning an
approximation f such that f̂(S) = 0 for all S /∈ S, and f̂(S) = ĉ(S) for all S ∈ S. We further
approximated the Fourier coefficients f̂ by ĝ. For each S ∈ S, we looked at f(x)χS(x) for a certain
amount of samples x, and averaged them to get ĝ(S). We set ĝ(S) = 0 for all S /∈ S. This gave
us a possibly non-Boolean function g. Finally, we argued that rounding g to the nearest Boolean
function h yielded a Boolean function that wasn’t too far from c in terms of the squared 2-norm.

Tracing through the algorithm, we can replace some of the steps and design a deterministic
algorithm that approximately learns c using membership queries. We can approximate the Fourier
coefficients f̂ using the algorithm described in the previous section. Since the algorithm is deter-
ministic, it uses membership queries instead of labeled samples. If we approximate each f̂(S) within
δ/|S| in order to get a function g, we have ‖c− g‖22 ≤ 2δ using an argument similar to the one done
earlier in class. We can approximate each Fourier coefficient in time poly(n, |S|, 1

δ ,
∑

T |ĉ(T )|), so we
find g (and thus h) deterministically in time poly(n, |S|, 1

δ ,
∑

T |ĉ(T )|) since we need to approximate
|S| coefficients. Thus, we get the following theorem.

Theorem 1. We can approximately learn concept classes C with Fourier spectra concentrated on

a known set S of subsets of [n] in deterministic time poly(n, |S|, 1
δ ,
∑

T |ĉ(T )|) using membership

queries.

In the setting where the set S was not known, we knew an upper bound M on the size of
S. We described a list decoding algorithm for the Hadamard code which used a combination of
labeled samples from the uniform distribution and membership queries. We approximated the set
S using a set S ′ consisting of all sets S whose Fourier coefficients were larger than a threshold
τ . We approximated S ′ by a set S ′′ which we obtained by expanding a binary tree with node
labels representing prefixes of characteristic sequences of sets. Let v be a prefix. We defined
Sv = {S | S ∩ {1, . . . , |v|} = v}. For a node labeled v, we approximated

∑
S∈Sv

(ĉ(S))2. In the
end, with high probability, we had a list of subsets of [n] that contained all subsets whose squared
Fourier coefficients were greater than τ , but didn’t contain any subsets of [n] whose squared Fourier
coefficients were less than τ/2.

Recall that for a node labeled v, we had

∑

S∈Sv

(ĉ(S))2 = Ex1,y1,z←Un+|v|
[c(x1z)χv(x1)c(y1z)χv(y1)] , (15)

where ab denotes the concatenation of strings a and b.
We slightly abuse notation now. Take a string ab, where a has length |v| and b has length

n − |v|. We append n − |v| ones to a and prepend |v| ones before b. Then we can view ab as a
componentwise product of the two strings a and b (now of length n). Similarly, append n−|v| ones
after v to get a string of length n which represents the characteristic sequence of the same set as
the original string v. Notice that with this change, the value of χv(a) is still the same, and so is
the value of χT (ab). Moreover, we can now write χT (ab) = χT (a)χT (b) where T ⊆ [n].

We use this abuse of notation together with the Fourier expansion of c, linearity of characters,

5



and linearity of expectation to rewrite the right-hand side of (15) as

Ex1,y1,z←Un+|v|

[(
∑

T

ĉ(T )χT (x1z)

)
χv(x1)

(
∑

U

ĉ(U)χU (y1z)

)
χv(y1)

]

=
∑

T,U

ĉ(T )ĉ(U)Ex1,y1,z←Un+|v|
[χT (x1)χT (z)χv(x1)χU (y1)χU (z)χv(y1)]

=
∑

T,U

ĉ(T )ĉ(U)Ex1←U|v|

[
χT (x1)χv(x1)Ey1←U|v|

[
χU (y1)χv(y1)Ez←Un−|v|

[χT (z)χU (z)]
]]

=
∑

T,U

ĉ(T )ĉ(U)Ex1←U|v|
[χT△v(x1)] Ey1←U|v|

[χU△v(y1)] Ez←Un−|v|
[χT△U(z)] . (16)

where the last line follows because x1, y1, and z are independent.
We can determine the quality of our approximation using an analysis similar to the analysis of

our approximation of individual Fourier coefficients. Instead of drawing from the uniform distri-
bution, we draw x1, y1, and z from the distribution induced by an ǫ-biased PRG. Then we find an
upper bound on the absolute value of the difference of the left-hand side of (15) and the expression
(16) with the uniform distribution replaced by the distribution induced by an ǫ-biased PRG.

Notice that if T = U and T ∩ {1, . . . , |v|} = v, all the expectations in (16) become 1. The
expectation over z is 1 because T = U , and the other two are one because in that case χT (x1) =
χv(x1) and χT (y1) = χv(y1) since the support of x1 and y1 is a subset of {1, . . . , |v|}. Thus if T ∈ Sv,
the term with T = U and T ∩ {1, . . . , |v|} = v cancels with some S ∈ Sv in the aforementioned
absolute value.

For any other combination of T and U , either T 6= U or T ∩{1, . . . , |v|} 6= v, so the character in
at least one of the expectations in (16) doesn’t correspond to the empty set, which means that at
least one of the expectations will be bounded above by ǫ (and the remaining ones by 1) in absolute
value. Then, after the cancellations described in the previous paragraph, we can use the triangle
inequality to bound the aforementioned absolute value by

∑

T,U

|ĉ(T )||ĉ(U)|ǫ = ǫ

(
∑

T

|ĉ(T )|
)2

. (17)

The tree we create has at most n/τ nodes. If we want to get the correct tree with probability

at least 1− δ, we need ǫ in (17) to be at most δτ/
(
n
(∑

T |ĉ(T )|
)2)

.
In order to approximate (15), we need to use three of the PRGs and cycle through all possible

combinations of their seeds. We have to do this because we pick x1, y1, and z independently. If we
set τ = δ, the number of seeds for each of the PRGs will be polynomial in n, 1

δ , and
(∑

T |ĉ(T )|
)2

.
We spend polynomial time on each triple of seeds when calculating the approximation, and the
number of approximations we have to perform is n/τ = n/δ. Thus, we get the following theorem.

Theorem 2. There is a deterministic algorithm that approximately list decodes the Hadamard code

in time poly(n, 1/δ,
∑

T |ĉ(T )|) using membersihp queries.

4.3 Learning Decision Trees

We can apply the active learning algorithm from the previous section to derandomize algorithms
for learning decision trees we saw earlier in the course. Recall that a decision tree of depth d

6



has at most 4d nonzero Fourier coefficients, each of which is a multiple of 1/2d. We can use the
derandomized approximation of (15) with the error from (17) equal to 1/22d+1 to create the tree
exactly. The leaves of the tree represent the subsets of [n] with nonzero Fourier coefficients. Now
we know the set S on which the Fourier spectrum of the concept we are learning is concentrated.
Thus, we can use the learning algorithm from Theorem 1 to learn the decision tree exactly if the
algorithm approximates each Fourier coefficient within 1/2d+1. Since there are at most 4d nonzero
Fourier coefficients, we get the following theorem as a consequence of Theorem 2 and Theorem 1.

Theorem 3. We can learn decision trees of depth d exactly using a deterministic algorithm that

runs in time poly(n, 4d) and uses membership queries.

The term 1/δ from the two previous theorems disappeared because δ from those two theorems
is approximately 1/4d. The term

∑
T |ĉ(T )| disappears because it’s bounded above by 2d, which is

less than 4d. Hence, we can learn decision trees of logarithmic depth exactly using a deterministic
algorithm that runs in polynomial time.

4.4 Inapproximability of MAX-QE

In the MAX-QE problem, we are given m quadratic equations over n unknowns. In the decision
version of the problem, our goal is to find an assignment of values to the variables such that all
the equations are satisfied. In the optimization version, our goal is to come up with an assignment
that satisfies as many equations as possible. This problem is NP-hard because we can arithmetize
3-SAT using a polynomial number of quadratic equations. We show that we cannot approximate
MAX-QE within a factor of 1/2 + 1/poly or better unless P = NP.

It is not known whether this inapproximability bound is tight. We can trivially achieve a factor
of 1/4, but we don’t know of an algorithm that performs better than that.

Theorem 4. We cannot approximate MAX-QE within a factor of 1/2 + 1/poly or better unless

P = NP.

Proof. Consider an instance of MAX-QE over GF(2) generated by arithmetizing a 3-CNF
formula. Recall that in order to arithmetize a clause using quadratic equations, we introduce a
variable zj for clause j and use equations zj = 1− x̃j1x̃j2 and (1− zj)x̃j3 = 0, where x̃ji

= (1− xji
)

when the clause contains xji
and x̃ji

= xji
when the clause contains xji

.
Notice that if some assignment a satisfies all equations, then a satisfies any linear combination

of those equations. On the other hand, suppose that a doesn’t satisfy all equations. Then a satisfies
exactly one half of the linear combinations of the equations because a linear combination is satisfied
by a if and only if it consists of an even number of equations that a doesn’t satisfy.

One would be tempted to conclude that this observation by itself gives us the inapproximability
result we want. However, the number of linear combinations is exponential in the input size, so the
result doesn’t follow yet. We use a small-bias PRG to complete the proof.

Pick a linear combination E(c) =
∑

j cjEj of equations where cj ∈ {0, 1} and c = (c1, c2, . . . , cm).
Let Ba be the set of equations Ej that are not satisfied by an assignment a to the variables. Then
a satisfies E(c) if and only if χBa

(c) = 1 because in that case the number of equations not satisfied
by a that are present in the linear combination is even.

7



Notice that

Ec←Un
[χBa

(c)] = Pr
c←Un

[χBa
(c) = 1]− Pr

c←Un

[χBa
(c) = −1]

= 2 Pr
c←Un

[χBa
(c) = 1]− 1

= 2 Pr
c←Un

[a satisfies E(c)] − 1,

which means that

Pr
c←Un

[a satisfies E(c)] =
1

2
+

1

2
Ec←Un

[χBa
(c)]. (18)

Now let’s replace Un by our small-bias PRG Gn. Since Gn is a small-bias PRG, Ex←Gn
[χBa

(c)] ≤ ǫ,
which means that

Pr
c←Gn

[a satisfies E(c)] =
1

2
+

1

2
Ec←Gn

[χBa
(c)] ≤ 1

2
+

ǫ

2
. (19)

Suppose that we could approximate MAX-QE within a factor 1
2 + ǫ or better using some algo-

rithm A. Then consider an arithmetization of a 3-SAT formula ϕ in m clauses and n variables. This
yields 2m quadratic equations (two for each clause) in n+m variables. Consider a small-bias PRG
Gn with bias ǫ that generates strings of length 2m. We need the seed length to be 2 log(2m/ǫ). We
then cycle through all random seeds of Gn, get a total of 22 log(2m/ǫ) = (2m/ǫ)2 strings of length
2m, and thus a total of (2m/ǫ)2 linear combinations of the equations formed during arithmetization
of ϕ. We can do this as long as ǫ > 1

poly . Now we run the algorithm A. We accept if A satisfies at

least 1
2 + ǫ of the linear combinations thus created, and reject otherwise.

If ϕ ∈ 3-SAT, A will produce an assignment to the variables of our system of equations that
satisfies at least 1

2 + ǫ > 1
2 + ǫ

2 of the linear combinations, so we accept correctly by (19). On the
other hand, if ϕ /∈ 3-SAT, (19) implies that A will produce an assignment that satisfies a fraction of
less than 1

2 + ǫ of the linear combinations. Since A gives a (1
2 + ǫ)-approximation to MAX-QE, it’s

not possible that all linear combinations are satisfiable, so we reject correctly as well. This means
that we can use A to decide satisfiability in polynomial time, which completes the proof. 2

5 Closing Remarks

Sometimes it is sufficient that small-bias PRGs have small bias only for small nonempty sets. For
such PRGs, we can do with even shorter seed lengths.

Next time we start discussing threshold phenomena.

8


