
CS 880: Advanced Complexity Theory 3/24/2008

Lecture 22: Biased Harmonic Analysis

Instructor: Dieter van Melkebeek Scribe: Baris Aydinlioglu

In the next two lectures we will discuss threshold phenomena, the study of which originated in
statistical physics and later turned out fruitful in computer science. Today we lay the groundwork
for our study, namely Biased Harmonic Analysis. In the next lecture we will use today’s results to
prove that every non-trivial monotone graph property has a sharp threshold.

Our study of Harmonic Analysis up to this point has been with respect to the uniform distri-
bution. Today we move to the more general setting of the p-biased distribution, where each bit of
a function’s input is set to −1 independently with probability p (hence the word “Biased”). Most
of the results that we’ve obtained in the uniform setting can also be obtained more generally in the
biased setting. We go over these first. Then we obtain an important result that we will use in the
next lecture.

1 Setting

Let f : {−1, 1}n → {−1, 1} be a monotone function. Define

µp(f) = Pr
p

[f(x) = −1],

where p in the subscript denotes the fact that each bit xi of the input x to f is independently set
to −1 with probability p. Note that for fixed f , µp(f) is a continuous function of p, since it can be
written as the sum of at most 2n polynomials in p of degree at most n.

Our study of threshold phenomena can be summed up in one question:

How does µp(f) behave as p changes from 0 to 1?

In particular, we are interested in the case where the input x to f represents the characteristic
string of a graph. For a graph G = (V,E) its characteristic is the string x of length

(|V |
2

)
where

xi = −1 iff the ith edge is present in G. A monotone graph property is then a property which is
invariant under graph isomorphism and which, once satisfied by G, continues to be satisfied as we
add more edges to G. Hamiltonicity and connectivity are two examples.

Proposition 1. If f is monotone then µp(f) is monotone (in p).

Proof. By induction on n, the length of f ’s argument, x. The base case, n = 1, is clear. In the
inductive step we condition on the value of x1 and use independence of the bits of x:

µp(f) = p µp(f |x1=−1) + (1 − p) µp(f |x1=1)

taking derivatives w.r.t. p we obtain

dµp(f)

dp
= p

dµp(f |x1=−1)

dp
+ (1 − p)

dµp(f |x1=1)

dp
+ µp(f |x1=−1) − µp(f |x1=1)

≥ µp(f |x1=−1) − µp(f |x1=1)

≥ 0.
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We obtain the first inequality by applying the induction hypothesis to the first two terms, which
we can do because any restriction of f is also monotone. The second inequality follows from the
monotonicity of f : the event f |x1=1 = −1 implies the event f |x1=−1 = −1 (where we view f |x1=1

and f |x1=−1 as random variables on the sample space of values for x2, . . . , xn.)

Remark: If the domain of f is infinite, µp(f) need not be differentiable. Even in this case Proposition
1 holds, although we need a different argument. We don’t have to worry about this, however; in
our finite setting µp(f) is always differentiable.

Proposition 1 and continuity imply that for a monotone f that is not constant, µp(f) is zero
for p = 0 and one for p = 1 and takes all values in the range [0, 1] in between. In fact, the proof of
Proposition 1 then shows that µp is strictly increasing. This leads to the following definition.

Definition 1. For a non-constant and monotone function f , its critical probability pc is defined
as the unique value of p ∈ (0, 1) for which µp(f) = 1

2 .

The study of threshold phenomena concerns the behavior µp(f) around pc for various f . If
µp(f) grows rapidly around pc then f is said to have a sharp threshold. Note that for a balanced
function f we have pc = 1

2 . In that case, we can use the standard harmonic analysis we have
developed so far to analyze the threshold behavior. There are many interesting functions, however,
for which pc 6= 1

2 . To analyze their threshold behavior we need to develop biased harmonic analysis.

2 Biased Harmonic Analysis

In the uniform setting, many of the results that we developed hinged on the existence of a basis
χS , S ⊆ [n], for the space of all functions from {−1, 1} to R with the following properties.

(i) The basis functions are orthonormal with respect to the inner product 〈f, g〉 = E[f(x)g(x)].

(ii) The function χS can be expressed as the product χS(x) =
∏

i∈S χ(xi), where χ(b) = b for
b ∈ {−1, 1}.

We want to maintain generalized versions of these properties in the p-biased setting so that
many of the results from the uniform setting carry over. For that reason, we would like there to be
a basis φS , S ⊆ [n], for the space of functions from {−1, 1}n to R such that the following hold.

(p-i) The basis functions are orthonormal with respect to the inner product 〈f, g〉p = Ep[f(x)g(x)].

(p-ii) The functions φS can be expressed as the product φS(x) =
∏

i∈S φ(xi) for some fixed function
φ : {−1, 1} → R.

We now derive what the function φ must be.

Claim 1. The following two conditions on φ are necessary and sufficient:

Ep[φ] = 0, (1)

Ep

[
φ2

]
= 1. (2)
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Proof. (1) is necessary: Property (p-ii) implies φ∅ = 1, because for S = ∅ the (empty) product∏
i∈S φ(xi) is just 1. Property (p-i) implies 〈φS , φ∅〉p = 0 for non-empty S, in particular for S

a singleton, say S = {i}. Therefore 0 = 〈φ{i}, φ∅〉p = Ep

[
φ{i} · 1

]
= Ep[φ]. (Note that the last

expectation is over 1 bit while the preceding expectation is over n bits.)
(2) is necessary: Ep

[
φ2

]
= Ep[φ · φ] = Ep

[
φ{i} · φ{i}

]
= 〈φ{i}, φ{i}〉p = 1. (The first and second

expectation is over 1 bit and the third is over n bits.)
(1) and (2) are sufficient:

〈φS , φT 〉 = Ep

[∏
i∈S△T φ(xi) ·

∏
i∈S∩T (φ(xi))

2
]

=
( ∏

i∈S△T

Ep[φ(xi)]
) ( ∏

i∈S∩T

Ep

[
(φ(xi))

2
])

,

which follows by using the independence of bits. Now, by (1), the first product in the last expression
is zero whenever it is non-empty, while the second product is always one, by (2). Therefore we have
orthonormality.

Solving (1) and (2) we obtain two solutions for φ, namely (φ(−1), φ(1)) = (±
√

q
p ,∓

√
p
q ). To

be consistent with the uniform setting, where we have χ(xi) = xi, we set φ(−1) negative.

Definition 2. For any fixed p ∈ (0, 1) and every S ⊆ [n], we define φS(x) =
∏

i∈S(xi), where

φ : {−1, 1} → R is given by φ(−1) = −
√

q
p and φ(1) =

√
p
q , with q = 1 − p.

The functions φS in Definition 2 satisfy the properties (p-i) and (p-ii). Now that we have
attained those two crucial properties of the uniform setting in the general p-biased setting, we
revisit the results from the uniform setting that carry over.

2.1 Fourier Expansion and Elementary Properties

Since we have an orthonormal basis φS , every function f can be written as

f =
∑

S⊆[n]

f̃(S) φS , where f̃(S) = Ep[f · φS ].

We denote the Fourier coefficient of f in the p-biased setting by f̃ to distinguish it from its uniform
version f̂ .

As an immediate consequence, all of the following elementary properties from the uniform
setting generalize to the p-biased setting.

- Plancherel: 〈f, g〉p =
∑

S

f̃(S)g̃(S)

- Parseval: 〈f, f〉p =
∑

S

(f̃(S))2

- Ep[f ] = f̃(∅)

- σ2
p[f ] =

∑

S 6=∅
(f̃(S))2

The proofs are left as exercises.
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2.2 Influence

Influence is generalized in the natural way:

I
(p)
i (f) = Pr

p

[
f(x) 6= f(x(i))

]
, where x(i) is x with its i-th bit flipped.

I(p)(f) = Ep[# neighbors with different value under f ] =

n∑

i=1

I
(p)
i (f).

Proposition 2. For any f

I
(p)
i (f) = 1

4pq

∑

S� i

(f̃(S))2.

Moreover, if f is monotone then

I
(p)
i (f) = 1

2
√

pq f̃({i}).

Proof. As in the uniform setting we make use of the difference operator, Dif :

(Dif)(x) =
f(x(i=1)) − f(x(i=−1))

2
.

For any S ⊆ [n], if i 6∈ S then DiφS = 0 since φS(x(i=1)) = φS(x(i=−1)). If i ∈ S, we can write

φS(x) = φ{i}φS\{i}(x) = φ(xi)φS\{i}(x), so we get DiφS =
(√p

q +
√

q
p

)
φS\{i} = 1

2
√

pqφS\{i}. By

linearity it follows that

Dif = 1
2
√

pq

∑

S∋i

f̃(S)φS\{i}. (3)

As a sanity check, note that p = q = 1/2 gives the original expression we obtained for Dif in the
uniform setting.

We conclude that

I
(p)
i (f) = Pr

p

[
f(x) 6= f(x(i))

]

= Ep

[
(Dif)2

]

= 1
4pq

∑

S∋i

(f̃(S))2.

If f is monotone, then Di(f) is nonnegative and thus

I
(p)
i (f) = Pr

p

[
f(x) 6= f(x(i))

]

= Ep[Dif ]

= 1
2
√

pq

∑

S∋i

f̃(S) 〈φS\{i}, φ∅〉p

= 1
2
√

pq f̃({i}).

(4)
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2.3 More Advanced Properties

We discuss the generalizations of some of the more advanced results we derived in the uniform
settin. We omit the proofs of the generalizations to the p-biased setting.

- Hypercontractivity: A precise formulation of this property in the p-biased setting is rather
involved, and we will not need it in that detail. We just mention that hypercontractivity
carries over to the p-biased setting, which allows the next two properties to be also carried
over.

- Approximability by juntas: Every f differs on a set of measure ≤ ǫ from some r-junta,

where r =
( 1

pq

)cpqI(p)(f)/ǫ
and c is a universal constant. The measure refers to the p-biased

distribution.

- Influential variables: Every f has an i ∈ [n] such that

I
(p)
i (f) ≥

d σ2
p(f)

pq log
1

pq

log n

n
,

where d is a universal constant. Note that the variance in the nominator prevents the first
fraction from growing unboundedly for small p or q.

3 Threshold Behavior and Influence

We now state and prove a key result relating the slope of µp to the influence of the underlying
function. We will use it next lecture in our study of threshold phenomena.

Theorem 1. For any f we have

dµp(f)

dp
=

1

2
√

pq

n∑

i=1

f̃({i})

Before we prove Theorem 1 we draw a corollary and give some examples.

Corollary 1. For any monotone f and p ∈ (0, 1) we have

dµp(f)

dp
= I(p)(f).

If f is a dictator then I(p)(f) = 1 for every p ∈ (0, 1), in particular for pc, and therefore f does
not have a sharp threshold. Indeed, the graph of µp(f) is just a line.

If f is majority then I(p)(f) = Θ(
√

n) for p = pc = 1/2, which asymptotically grows very large.
Therefore, the majority function has a sharp threshold.

If f is a tribes function then I(p)(f) = Θ(log n) for p = pc, which grows slower than the case of
majority but still grows very large asymptotically. Therefore, the tribes function also has a sharp
threshold.
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Figure 1: Graphs of µp for dictator, tribes, and majority functions.

Proof of Theorem 1. By using Ep[f ] = Prp[f = 1] − Prp[f = −1], we can write

µp(f) =
1 − Ep[f ]

2
,

and work with Ep[f ] instead µp(f).
One way to obtain a p-biased distribution is to start from the all-ones vector and flip each bit

with probability p. Therefore we can write

Ep[f ] = (Tαf)(1, 1, . . . , 1), where p =
1 − α

2
(5)

=
∑

S⊆[n]

α|S|f̂(S)χS(1, 1, . . . , 1)

=
∑

S⊆[n]

α|S|f̂(S).

Note that we used original Fourier coefficients and characters.
Differentiating,

dEp[f ]

dp
= −2

∑

S⊆[n]

|S|α|S|−1f̂(S) (p is hidden in α)

= −2
n∑

i=1

∑

S∋i

α|S|−1f̂(S) (regrouping terms)

= −2

n∑

i=1

∑

S∋i

α|S|−1f̂(S)χS\{i}(1, 1, . . . , 1)

︸ ︷︷ ︸
(∗)

= −2
n∑

i=1

(
Tα(Dif)

)
(1, 1, . . . , 1) (claim: (∗) =

(
Tα(Dif)

)
(1, 1, . . . , 1))

= −2

n∑

i=1

Ep[Dif ] (same trick as in (5))

=
−1√
pq

n∑

i=1

f̃({i}) (same as in (4))
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In order to establish (∗), it suffices to observe the uniform equivalent of (3), namely

Dif =
∑

S∋i

f̂(S)χS\{i},

and apply the linearity of the operator Tα.

4 Next Lecture

We will prove that every non-trivial monotone graph property has a sharp threshold.
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