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Lecture 23: Threshold Phenomena

Instructor: Dieter van Melkebeek Scribe: Seeun Umboh

In the last lecture, we developed the necessary machinery to discuss threshold phenomena. We
are interested in the behavior of monotone, non-trivial (that means non-constant in this setting)
Boolean functions f , when inputs are drawn from a p-biased distribution. That is, we want to
consider the probability

µp(f) = Pr
x∼p

[f(x) = −1]

where the subscript x ∼ p means each bit of the input x is set to -1 with probability p independently.
Last lecture we argued that µp(f) is a nondecreasing function in p. We also defined the function’s
critical probability pc as the least p such that µp(f) is at least 1

2 . In fact, in the case of finite
domains we showed that µp(f) is increasing from 0 to 1 when p goes from 0 to 1, so pc is the unique
p ∈ (0, 1) for which µp(f) = 1

2 .

1 Background

We are mainly interested in the setting where f represents a graph property. For a graph G = (V,E)
with m = |V | vertices, a graph property is a Boolean function f on n =

(

m
2

)

variables where each
variable represents whether a particular edge is in the graph or not. We want to study µp(f), the
probability that a random graph, where each edge is in the graph with probability p independently,
satisfies the property f as a function of p. Today we will argue that for every non-trivial monotone
graph property, µp has a sharp threshold. By a sharp threshold, we mean that around the critical
probability, µp has a steep slope. In particular, µp goes from almost 0 to almost 1 in a short interval.

The study of sharp thresholds originated in physics, where they are known as phase transitions

instead. Physicists studying various systems noticed that for some properties, as a function of some
parameter such as temperature, the probability of observing the property in the system jumped
from almost 0 to almost 1 at a certain point. Examples include transitions from the solid to the
liquid state, or from a non-ferromagnetic to a ferro-magnetic regime. The systems are often modeled
using graphs and the graph properties are in turn captured using Boolean functions.

2 Infinite Graphs

In the case of infinite graphs, threshold phenomena are not all that surprising. In this setting
the thresholds are often as sharp as they can be. That is, at the critical probability, µp(f) jumps
suddenly from 0 to 1. This happens in the case of infinite-dimensional systems as a result of the
Kolmogorov 0-1 law. Roughly, the law applies to probability spaces that are infinite-dimensional
product spaces, where each component is set independently. In particular, it applies to properties of
infinite graphs since each variable is set independently, and there are infinitely many of them. The
law says that for every property that is invariant under changes to a finite number of components,
the probability that the property holds is either 0 or 1. Thus, for every fixed p, µp is either 0 or 1.
This means that at the critical probability, µp suddenly jumps from 0 to 1.
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An an example, consider a random instance of the infinite 2-dimensional grid, where each edge
is in the grid with probability p independently. The property we are interested in is whether or not
the graph has a connected component of infinite size. Clearly, this property does not change if we
only flip a finite number of variables. So, the Kolmogorov 0-1 law applies here and by the above
argument, µp goes directly from 0 to 1 at the critical probability. In fact, the critical probability
for this graph property is 1/2.

This is related to percolation theory, in which we have some porous material that may have
cavities in certain positions and there is oil somewhere in the material. The question of interest
is if we drill a hole at a random vertex, whether or not the oil will flow away or remain contained
within the material, over time. If the component that contains the hole is infinite, then the oil will
flow away, otherwise it will be contained in that component. The relationship with the above is
that below threshold, the component containing the vertex must be finite. Above the threshold,
with positive probabiilty, the component containing the particular vertex is infinite. Otherwise, by
symmetry, the probability of any component being infinite would be 0, and therefore the probability
of the graph having an infinite component would be 0, as well.

3 Finite Graphs

In this lecture, we will concentrate on finite-dimensional systems and random graphs. Finite random
graphs cannot exhibit such sharp threshold behavior as infinite ones, but the change can still be
quite sudden. The latter is typically the case when the probabilistic method is used – a sharp
threshold exists whenever the probability that a random object has the desired property is either
extremely high or extremely low. We consider two concrete examples before embarking on a more
general study.

3.1 Connectivity and Cliques

In this setting we have a fixed number of vertices, and each edge is in the graph with probability p
independently. We are interested in the probability that the graph is connected as a function of p.
For very small p, we expect mostly isolated vertices, and for large p we get connectivity with high
probability. It turns out that

pc ∼
ln m

m
. (1)

This is a standard application of the probabilistic method and we only give a sketch of the proof
here. We show that if p is slightly below the critical probability, that is p ≤ (1− ǫ)pc, then µp → 0
as m → ∞. If we are slightly above, that is p ≥ (1 + ǫ)pc, then µp → 1 as m → ∞.

Proof Sketch. We first argue that if p is small, then the probability of having an isolated vertex is
non-zero. The probability that a given vertex is isolated is (1− p)m−1 since it has m− 1 neighbors.
So we have

E[# of isolated vertices] = m(1 − p)m−1 ∼ m · e−pm.

If p ≤ (1 − ǫ)pc, then m · e−pm ≥ m · mǫ−1 → ∞ as m → ∞. We can also show that the variance
of the number of isolated vertices is small compared to its expectation. Chebyshev then tells us
that with high probability the number of isolated vertices is close to its expectation. Since the
expectation approaches ∞ as m → ∞, the probability that there are no isolated goes to 0, which
is what we wanted to show.
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In the case where p ≥ (1 + ǫ)pc, we can count the number of k-subsets S of vertices such that
there are no edges between S and S̄. There are

(m
k

)

such subsets and each of the k vertices have

m − k neighbors outside of S. Let
(

V
k

)

denote the set of all k-subsets of the vertices, then

E

[∣

∣

∣

∣

{

S ⊆

(

V

k

)

: no edges between S and S̄

}∣

∣

∣

∣

]

=

(

m

k

)

(1 − p)k(m−k)

≤
(e · m

k

)k
(1 − p)k(m−k)

=
(e · m

k
(1 − p)m−k

)k
, (∗)

where the second inequality is a standard bound on binomial coefficients. Taking a geometric sum
of (∗), we have that the expected number of subsets S of V of size at most m/2 such that there
are no edges between S and S̄ is o(1),

E





∣

∣

∣

∣

∣

∣







S ⊆

m/2
⋃

k=1

(

V

k

)

: no edges between S and S̄







∣

∣

∣

∣

∣

∣



 ≤

m/2
∑

k=0

(e · m

k
(1 − p)m−k

)k
. (2)

Note that for small k, say k ≤ ǫ
2 ·m, the ratio of the sum on the right-hand side of (2) can be upper

bounded by e·m
k (1 − p)m−k ≤ e · m · e−p(1− ǫ

2
)m ≤ e · m · m−1(1+ ǫ

2
) → 0, for m → ∞. If k ≥ ǫ

2 · m,

the ratio is e·m
k (1 − p)m−k ≤ 2e

ǫ · e−p m
2 ≤ 2e

ǫ · m−(1+ǫ)/2 → 0, when m → ∞. Thus, the right-hand
side of (2) is o(1) when m → ∞. if p ≥ (1 − ǫ)pc.

If the graph is disconnected, then there is at least one subset S of the above type since there
must be a subset that is disconnected from the rest of the graph, and either it or its complement has
size at most m/2. Now, since the expectation of the number of subsets of size at most m/2 such that
there are no edges between S and S̄ is o(1), by Markov’s inequality, with all but o(1) probability,
the number of such subsets is 0, and so with 1 − o(1) probability the graph is connected.

In the connectivity example the critical probability is extreme in the sense that it converges
to 0. An example in which the critical probability remains bounded away from 0 and 1 is the
existence of a clique of size ⌊2 log m⌋. In this case, we can show a sharp threshold with pc ∼ 1/2. In
particular, if p > 1

2 + ǫ, then the probability that a clique exists is very large, and if p < 1
2 − ǫ, then

the probability is very small. This is a classical result in Ramsey theory and a prime illustration
of the probabilistic method, but we will not go into the argument in this class.

We note that the arguments in the preceding proof sketches are very specific. We now show an
argument that works for all non-trivial monotone graph properties, albeit with weaker parameters.

3.2 Every Monotone Graph Property Has a Sharp Threshold

First of all let us properly define sharp thresholds.

Definition 1 (Weak Sharp Threshold). For all ǫ > 0, the size of the interval on which µp goes

from ǫ to 1 − ǫ is o(1) in terms of n.

Both examples satisfy this. But this does not say much about connectivity since in that case
(1) → 0 very quickly anyway as n → ∞, and so naturally the size of the interval is o(1). The
following stronger definition corrects this shortcoming by comparing the size of the interval to the
critical probability.
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Definition 2 (Strong Sharp Threshold). For all ǫ > 0, the size of the interval on which µp goes

from ǫ to 1 − ǫ is o(min(pc, qc)) in terms of n, where qc = 1 − pc.

Note that Definitions 1 and 2 are equivalent in cases where the critical probability is bounded
away from 0 and 1, as in the clique example. Otherwise, Definition 2 is more strict. Our analysis
of the connectivity threshold shows that the stricter Definition 2 applies there.

In our generic treatment, we will also consider those two cases. In the case of extreme critical
probability, we show that the weaker Definition 1 applies to every nonconstant monotone f , but
we make no claims about the stronger Definition 2. In the case of bounded critical probability, we
exhibit a sharp threshold for nonconstant monotone functions f that are weakly symmetric; graph
properties give a natural class of examples of weakly symmetric functions.

3.2.1 The Case of Extreme Critical Probability

If pc is extreme, we can assume wlog that that pc is close to 0. By symmetry, our argument also
holds for pc close to 1.

It turns out that weak thresholds hold for any monotone function f in this case and the argument
is similar to that of the Kolmogorov 0-1 law for inifinite graphs. Let p0, p1 be such that µp0

= ǫ
and µp1

= 1 − ǫ, respectively. Our goal is to argue that p1 is not much larger than p0.
Since µp0

= ǫ, if we sample strings x1, . . . , xk from a p0-biased distribution, we have

Pr
x1,...,xk∼p0





k
∨

j=1

f(xj) = −1



 = 1 − (1 − ǫ)k. (+)

Since f is monotonic, if f(xj) = −1 for at least one j, then f
(

∨k
j=1 xj

)

= −1 where the
∨

denotes

bitwise-OR.. So, (+) is at most

Pr
x1,...,xk∼p0



f





k
∨

j=1

xj



 = −1



 = Pr
y∼1−(1−p0)k

[f(y) = −1],

where the equality is because
(

∨k
j=1 xj

)

i
is 1 if and only if (xj)i = 1 for all j. This happens with

probability (1−p0)
k, so sampling

(

∨k
j=1 xj

)

i
is equivalent to sampling a string from a (1−(1−p0)

k)-

biased distribution.
Combining these facts, we have

Pr
y∼1−(1−p0)k

[f(y) = −1] ≥ 1 − (1 − ǫ)k. (++)

If the right-hand side of (++) is at least 1 − ǫ, then by monotonicity of µp in p and the definition

of p1, we must have 1− (1− p0)
k ≥ p1. It is sufficient to choose k ≥ log ǫ

log(1−ǫ) to have the right-hand

side of (++) ≥ 1 − ǫ.
We have p1 ≤ 1− (1− p0)

k ≤ kp0 because (1− p0)
k ≥ 1− kp0. So, by choosing k = log ǫ

log(1−ǫ) , we
have the following theorem.
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Theorem 1. For any nonconstant monotone function f , let (p0, p1) be the interval on which µp(f)
goes from ǫ to 1 − ǫ. Then

p1 ≤
log ǫ

log(1 − ǫ)
· p0.

Recall that to argue for sharp thresholds our goal is to establish that for all ǫ > 0, the size of
the interval in which µp goes from ǫ to 1 − ǫ, that is p1 − p0, is o(1). In the preceding, we have
shown that p1 is at most a constant factor, depending on ǫ, larger than p. So, if pc is small, then
p0, and hence p1, is small.

This gives a weak sharp threshold if pc = o(1). By symmetry, if qc = o(1) then we have a weak
sharp threshold at the other extreme. So, we have shown that if the critical probability of any
nontrivial monotone graph property approaches 0 or 1 as n grows, then the property has a weak
sharp threshold.

Note that even though this theorem applies to all non-trivial monotone functions, it only implies
a weak sharp threshold at best and does not say anything for functions whose critical probability
is bounded away from 0 and 1.

3.2.2 The Case of Bounded Critical Probability

In this case we cannot hope to have a result as general as for properties with extreme critical
probabilities. For example, dictators have pc = 1/2 and do not have a sharp threshold, as µp goes
from 0 to 1 in a straight line. So we need an extra condition on f to ensure a sharp threshold.
Essentially, the function’s behavior should not be local to a proper subset of variables. For example,
a dictator function’s behavior is local since only one variable determines the outcome. We will argue
that it suffices for the function f to be weakly symmetric.

Recall that a function is symmetric if it is invariant under all permutations of its variables.
An example is MAJORITY. The “weak” qualifier means that instead of being invariant under all
permutations, the function only needs to be invariant under some transitive permutation group
G, where “transitive” means that any position can be reached from any other position using a
permutation from G. Here is the formal definition.

Definition 3 (weak symmetry). A group G of permutations on [n] is transitive if for every i, j ∈ [n],
there exists a permutation π ∈ G such that π(i) = j. A function f on n variables is weakly

symmetric if there exists a transitive group of permutations on [n] such that for each x in the

domain of f and each π ∈ G, f(x) = f(x ◦ π).

In the above definition, x ◦ π denotes the action of π on x as we defined it in earlier lectures:
the ith component of (x ◦ π) is the π(i)the component of x.

An example of a function that is weakly symmetric but not symmetric is Tribes. The function
does not change when we switch variables within each

∧

or swap the
∧

’s. Thus, it is invariant
under the group generated by those permutations, which is transitive.

We now argue that if a monotone, nonconstant function is weakly symmetric, then it has a
sharp threshold. The reason weak symmetry helps is that the influences of the individual variables

of a weakly symmetric function are all the same, i.e., I
(p)
i (f) = I

(p)
j (f) for all i, j ∈ [n]. This follows

from the fact that the p-biased distribution is invariant under permutations: By definition of weak
symmetry, if we consider any two variables i and j, there exists a permutation π ∈ G such that

π(i) = j. Since both the distribution and f are invariant under π, I
(p)
i (f) = I

(p)
π(i)(f) = I

(p)
j (f).
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In the previous lecture, we mentioned that every Boolean function f on n variables has a variable
i such that

I
(p)
i (f) ≥

c · σ2
p(f)

pq log(1/(pq))
·
log n

n
,

where c > 0 is a universal constant. Note that c
pq log(1/(pq)) ≥ d for some universal constant d > 0.

Since the influences of the individual variables are equal by weak symmetry, we have

I(p)(f) =

n
∑

i=1

I
(p)
i (f)

≥ n ·

(

d · σ2
p(f) ·

log n

n

)

= d · µp(f)(1 − µp(f)) · log n.

By the corollary to the main theorem of the previous lecture, we know that for every monotone
function f ,

dµp

dp = I(p)(f). So, for ǫ ≤ µp ≤ 1/2,

dµp

dp
≥

d

2
· µp · log n,

which we can rewrite as
d

dp
(ln µp) ≥

d

2
. (3)

By integrating (3 over [p0, pc] where p0 is the unique value of p where µp(f) = ǫ, we get

∫ pc

p0

d

dp
(ln µp)dp = ln

(

µpc

µp0

)

= ln(
1

2ǫ
) ≥

d

2
· (log n) · (pc − p0).

We conclude that pc − p0 ≤ 2 ln(1/(2ǫ))
d log n . A similar bound for p1 − pc follows by symmetry. This gives

us the following theorem.

Theorem 2. Let f be a weakly symmetric, nonconstant, monotone Boolean function on n variables,

and let (p0, p1) be the interval on which µp(f) goes from ǫ to 1− ǫ. Then p1 ≤ p0 + a log(1/ǫ)
log n , where

a is a universal constant.

A special case of weakly symmetric functions are graph properties. The variables of graph
properties represent the presence of edges in the graph. Graph properties are invariant under
relabeling of vertices, or more precisely, under permutations of edges induced by relabeling vertices.
Since these permutations can map any given edge to any other given edge, the group they form is
transitive. Thus, we can apply the above theorem to monotone graph properties and conclude the
following.

Corollary 1. Every nonconstant monotone graph property has a sharp threshold in the sense of

Definition 1.

4 Next Lecture

We will discuss harmonic analysis over groups with more than two elements.
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