
CS 880: Quantum Information Processing 9/7/10

Lecture 2: From Classical to Quantum Model of Computation

Instructor: Dieter van Melkebeek Scribe: Tyson Williams

Last class we introduced two models for deterministic computation. We discussed Turing Ma-
chines, which are models of sequential computation, and then families of uniform circuits, which
are models of parallel computation. In both models, we required the operators to be physically
realizable and imposed a uniformity condition; namely, that the state transitions could be described
by a finite set of rules independent of the input.

In this lecture, we shall develop a model for probabilistic computation, from which our model
for quantum computation will follow.

1 Model for Probabilistic Computation

1.1 Overview

Probabilistic computers can use randomness to determine which operations to perform on their
inputs. Thus, the state at any given moment and the final output of a computation are both
random variables. One way to represent a state |ψ〉 of dimension m is as a probability distribution
over base states, |s〉 for s ∈ {0, 1}m,

|ψ〉 =
∑

s∈{0,1}m

ps |s〉 0 ≤ ps ≤ 1,
∑

s∈{0,1}m

ps = 1

where ps denotes the probability of observing base state |s〉. These state vectors have an L1 norm
of 1.

Since the output is now a random variable, we require a computation to provide the correct
answer with high probability. That is, given relation R, input x, and output y,

(∀x) Pr [(x, y) ∈ R] ≥ 1− ε

where ε denotes the probability of err. If ε were smaller than another bad event, such as the
computer crashing during the computation, then we are satisfied. In contrast, ε = 1/2 is no good
for decision problems, because the algorithm can just flip a fair coin and return the result. If R is
a function, then ε = 1/3 is good enough because we can rerun the algorithm a polynomial number
of times, take the majority answer, and achieve exponentially small error via the Chernoff bound.
In fact, any ε bounded away from 1/2 will suffice.

1.2 Local Operations

In the probabilistic setting, a transition operator can depend on probabilistic outcomes (i.e., coin
flips). Thus, the local effect of a transition operator can be described as the multiplication of a
(left) stochastic matrix T with a state vector |ψ〉,

(∀j)
∑

i

Tij = 1 0 ≤ Tij ≤ 1.

1

We interpret Tij as the probability of entering state i after applying T to state j. As before, the
state after an operation is T |ψ〉 because

(|ψafter〉)i = (T |ψbefore〉)i =
∑

j

Tij (|ψbefore〉)j .

The matrix for a deterministic operator, which is an all zeros matrix except for a single 1 per
column, is just a special case of a stochastic matrix. See Figure 1 for examples of stochastic matrices
for a fair coin flip and a biased coin flip.

C =
[

1
2

1
2

1
2

1
2

]
(a) Fair coin flip

Cp =
[

p p
1− p 1− p

]
(b) Biased coin flip

Figure 1: Coin flip gates

The following exercise shows that, in a strong sense, coin flips are the only genuinely probabilistic
operations we need.

Exercise 1. Given a probabilistic circuit, C, of size t and depth d, there is an equivalent probabilistic
circuit C ′ of size O(t) and depth O(d) such that the first level of C ′ consists only of biased coin
flips and all other levels of C ′ are deterministic. Here, equivalent means that for any input x the
distribution of outputs y is the same for C and C ′.

1.3 Uniformity Condition

We can think of a deterministic Turing Machine as having a Boolean measure of validity associated
with every possible transition between configurations. A 1 signifies a completely valid transition,
while a 0 denotes a completely invalid transition:

δ : (Q\{qhalt} × Γ)× (Q× Γ× {L,P,R}) → {0, 1}

A probabilistic TM will have a probability of validity associated with every transition:

δp : (Q\{qhalt} × Γ)× (Q× Γ× {L,P,R}) → [0, 1]

It is important to note that, in order to satisfy the uniformity condition, these probabilities must
be easily definable. In particular, we require the nth bit of any bias be computable in time poly(n).
If we did not impose this constraint, we could use the probabilities to encode information, such as
“0.” followed by the characteristic sequence of the halting language. To decide if the nth Turing
machine halts, we could repeatedly sample from such a biased coin flip gate in order to estimate p.
After we are confident in the value of the nth bit, we return that bit, thereby solving the halting
language.

This uniformity condition allows for an infinite number of basic operations. If this is a problem,
then we can also consider having just the fair coin flip gate as the only source of randomness. In
this case, we would use this gate to get good estimates for any biased coin flips gates that we
need. However, we would also have to relax the universality condition. Instead of being required
to sample exactly from the distribution of any probabilistic circuit, we would only be required to
sample approximately. We will discuss this notion of universality in the next lecture.

2

1.4 A More Abstract View

We define a pure state, |ψ〉, as a convex combination of base states, |s〉. That is, |ψ〉 =
∑

s ps |s〉,
where ps is the probability of being in base state |s〉,

∑
s ps = 1, and 0 ≤ ps ≤ 1. A mixed state, is

a discrete probability distribution over pure states.
We can think of the probabilistic model as allowing two operations on any pure state |ψ〉.

1. Local, stochastic transformations, as specified by probabilistic transition matrices. These are
L1 preserving.

2. A terminal observation, which is a probabilistic process that transforms a mixed state into
a base state after all transformations have been applied. That is, |ψ〉 → |s〉, where the
probability of achieving |s〉 is ps.

Exercise 2. What happens if we allow observations at any point in time? That is, in between
transitions? A motivation, consider the problem of composing two procedures, both of which observe
their respective states after their transformations are complete?

2 Model for Quantum Computation

2.1 Overview

As with the probabilistic model, the state of a system is described by a super-position of base
states, but here:

1. the coefficients are complex numbers (usually denoted by α because it stands for an amplitude)

2. vectors have an L2 norm of 1 (i.e.,
∑

s |αs|2 = 1)

A qubit is the quantum analog of a classical bit and satisfies the above two conditions. The
interpretation is that Pr[observing |s〉] = |αs|2. Note, this is a valid interpretation because the
above defines a valid probability distribution.

2.2 Local Operations

For consistency of interpretation, global operations have to preserve the 2-norm. It is necessary
and sufficient that local operations are unitary transformations. That is,

T ∗T = I = TT ∗,

where T ∗ is the conjugate transpose1 of T . Unitary matrices have a full basis of eigenvectors with
eigenvalues |λ| = 1. Since the determinant is the product of the eigenvalues, |det | = 1 as well.
Example: Does the classical “coin-flip” transformation describe a valid quantum gate? No, because
its transistion matrix is not unitary. It does not even have full rank. �

1The notation T ∗ for the conjugate transpose is more common in linear algebra while T † is more common in
quantum mechanics.

3

The quantum analog of a fair coin flip is the Hadamard gate. It is described by the following
matrix, which is unitary:

H =
1√
2

[
1 1
1 −1

]
If we apply the Hadamard gate to base states, we get the intuitive “fair coin” result. That is,
regardless of which base state we are in, we end up with 50% probability of being in base state |0〉
and 50% probability of being in base state |1〉:

H(|0〉) =
1√
2
|0〉+

1√
2
|1〉

H(|1〉) =
1√
2
|0〉 − 1√

2
|1〉

What if we apply the Hadamard gate to a super-position of base states?

H

(
1√
2
|0〉+

1√
2
|1〉

)
=

1
2
(|0〉+ |1〉) +

1
2
(|0〉 − |1〉) = |0〉

H

(
1√
2
|0〉 − 1√

2
|1〉

)
=

1
2
(|0〉+ |1〉)− 1

2
(|0〉 − |1〉) = |1〉

Unlike in the probabilistic setting, we do not necessarily get a “fair coin” result. The above is
an example of destructive interference, the key ingredient of quantum algorithm design. Quantum
algorithms that run faster than their classical counterparts make constructive use of destructive
interference, effectively canceling out wrong computation paths.

The tranformation matrix for the quantum analog of a biased coin flip is[√
p

√
p√

1− p −
√

1− p

]
.

Another prevalent quantum gate is the rotation

Rθ =
[
1 0
0 eiθ

]
,

which effectively adds θ to the phase of the 1-component.
Example: Can we use deterministic gates in the quantum setting? Consider the NAND gate. The
matrix associated with the NAND gate’s transformation is not unitary, as both |00〉 and |10〉 map
to the same output state, |10〉. In general, deterministic gates are unitary if and only if they are
permutations of base states. That is, if they are reversible. �

An important gate is the CNOT gate, which is shown schematically in Figure 2. The matrix

b1 �������� b1 ⊕ b2
b2 • b2

Figure 2: CNOT gate

4

associated with this transformation is given below:

T =


1 0 0 1
0 0 0 0
0 0 1 0
0 1 0 0


This gate flips its first input bit if the second bit, also known as the control bit, is a 1; otherwise it
leaves the first input bit unchanged. Note that if b1 = 0, then the CNOT gate effectively copies b2.

2.3 Simulating classical gates

Even though classical gates, such as the NAND gate, do not translate directly into the quantum
setting, they can be simulated. Given a transformation

f : {0, 1}∗ → {0, 1},

we can define a new transformation

f̃ : {0, 1}∗ × {0, 1} → {0, 1}∗ × {0, 1} : (x, b) → (x, b⊕ f(x)).

Essentially, f̃ maintains a copy of its input in order to make the transformation reversible. One
can perform this transformation on all classical gates.
Example: A reversible NAND gate is shown schematically in Figure 3. The additional third bit,
which we need to simulate the classical gate, is called an ancilla bit. �

b1
R-NAND

b1
b2 b2
b3 b3 ⊕ b1 ∧ b2

Figure 3: Reversible NAND gate

We can apply the above idea to an entire classical circuit. Sometimes, the “garbage” output
due to the ancilla bits is problematic, as it is not defined by the original classical transformation.
Specifically, this garbage output will prevent the destructive interference from happening as desired.
We can circumvent this difficulty by copying the output of the circuit and then running the circuit
in reverse as illustrated in Figure 4.

Theorem 1. If f can be computed by a deterministic circuit of size t and depth d, then f̃ can be
computed by a reversible circuit of size O(t) and depth O(d) using O(t) ancilla bits.

There are more efficient space usage transformations than specified by the above theorem, but
this efficiency comes at the expense of time efficiency. It is an open question whether one can
simulate a classical circuit in constant time and constant space relative to the original circuit.

5

0 /t

C ′

g /t

C ′−1

0

0 /i z /i 0

x /n y /k • x

0 /k �������� y

Figure 4: Computation of f̃ for arbitrary classical circuit C.

6

