
CS 880: Quantum Information Processing 10/4/10

Lecture 13: Factoring Integers

Instructor: Dieter van Melkebeek Scribe: Mark Wellons

In this lecture, we review order finding and use this to develop a method for factoring inte-
gers efficiently. With the exception of order finding, none of today’s derivations rely on quantum
computing.

1 Order Finding

In the previous class we covered order finding, which solves the following problem: Given integers
a,M > 0 and 0 < a < M with gcd(a,M) = 1, find the smallest integer r > 0 such that ar ≡ 1
mod M .

Recall from the previous lecture that we used eigenvalue estimation to developed a quantum
procedure that runs in time poly-log(M + N) and returns ω̃j such that j is uniformly distributed
in {1, 2, ...r} and

Pr
[∣∣∣∣ω̃j − j

r

∣∣∣∣ ≤ 1
N

]
≥ 8
π2
≈ 0.81. (1)

Here N is defined as
N = 2n, (2)

where n is the number of qubits used in the eigenvalue estimation and with larger n comes greater
accuracy. There are two important facts about this procedure that we can exploit.

1.1 Fact 1

If the eigenvalue estimation is precise enough that∣∣∣∣ω̃j − j

r

∣∣∣∣ ≤ 1
2M2

(3)

then we can recover j/r in reduced terms in time poly-log(M). By reduced terms, we mean that
we can find j′ and r′ such that gcd(j′, r′) = 1 and j′/r′ = j/r.

To recover j/r in reduced terms, we use continued fraction expansion (CFE). By definition, a
continued fraction takes the form

a0 +
b1

a1 + b2
a2+

b3
...

(4)

where ai, bi ∈ Z. A continued fraction is sometimes denoted as
∞∑
i=0

bi|
|ai

(5)

and the kth convergent is
k∑

i=0

bi|
|ai

=
pk

qk
(6)

1



where pk, qk ∈ Z and gcd(pk, qk) = 1.
To construct the CFE of some x ∈ R, we write x as

x = bxc+ (x− bxc) = bxc+
1

1/(x− bxc) . (7)

Since 1/(x− bxc) ≥ 1, it itself can be expanded into a CFE. Eventually, the expansion will end if
for some iteration x− bxc = 0, which will happen if and only if x is rational. If x is irrational, this
expansion continues forever but the sequence of convergents quickly converges to x. As an example
of CFE, consider the case where x = π.

π = 3.14 . . .
π = 3 + 0.14 · · · ⇒ p0

q0
= 3

π = 3 +
1

1/0.14 . . .

π = 3 +
1

7 + 0.06 . . .
⇒ p1

q1
= 3 +

1
7

=
22
7

1.1.1 Properties of Continued Fraction

Recall from equation (6) that qk is the denominator of the kth convergent. It will be always be
true that

qk+1 ≥ 2qk (8)

and ∣∣∣∣pk

qk
− x
∣∣∣∣ ≤ 1

q2k
. (9)

From these two equations, it should be clear that CFE converges very quickly.
Additionally, if ∣∣∣∣pq − x

∣∣∣∣ ≤ 1
2q2k

(10)

and gcd(p, q) = 1 then p/q appears as a convergent for some iteration of the CFE of x. Note
the similarity between equation (10) and equation (3). If we set N = 2M2 and perform the order
finding procedure to get some ω̃j , we can use CFE on ω̃j to recover j and r. It follows from equation
(8) that the number of convergents we need to calculate is logarithmic in the size of M .

1.2 Fact 2

If we pick two integers, j1 and j2, independently and uniformly at random from {1, 2, ...r} then

Pr [gcd (j1, j2) = 1] ≥ 1−
r∑

p∈prime

1
p2

> 1−
∞∑

p∈prime

1
p2
≥ 0.54. (11)

To show the inequality, consider that for any j we pick, the odds that it is divisible by some prime
p is asymptotically 1/p, but will always be ≤ 1/p. Since j1 and j2 are picked independently, the

2



chance that they would both be divisible by prime p is ≤ 1/p2. If we sum over all primes, we get
the probability that they share any prime factors, thus the inequality shown in equation (11).

In the case that j1 and j2 are relatively prime, then r = lcm(r′1, r
′
2). Since eigenvalue estimation

produces j1 and j2 that are relatively prime, any factors of r that were canceled in the fraction
j′1/r

′
1 could not have been canceled in the fraction j′2/r

′
2. Thus r = lcm(r′1, r

′
2).

1.3 Quantum Algorithm

We can now describe our order finding algorithm. We first run the eigenvalue estimation twice and
get a ω̃1, and ω̃2. Using CRE, we can determine r′1 and r′2 and compute r = lcm(r′1, r

′
2). Using

modular exponentiation, we check whether ar ≡ 1 mod M in time polylog(M). If so, we know that
r equals the order of a modulo M , or is a nontrivial multiple. The probability of the former is at
least the probability that we have success in equation (1) for both independent runs, and success in
equation (11). This puts the total probability of success above 0.35 provided N ≥ 2M2. With this
probability, we can simply repeat this algorithm several times and output the smallest r retained.
This gives the correct result with very high probability.

Let us consider what the total running time of this algorithm is. We naturally choose N = 2M2,
so the running time is in terms of M , and using the naive implementation of multiplication, this runs
inO ((logM)3

)
. The most efficient known algorithm runs in timeO ((logM)2(log logM)(log log logM)

)
.

2 Factoring Integers

When asked to factor some number M , we should first check if it is a prime or a prime power. This
check can be done in polynomial time, and if M is a prime or prime power, we are done. If M is
composite, we need only a means to find a single nontrivial factor, as we can simply divide M by
this factor and repeat our factoring algorithm as needed. To find a nontrivial factor, we use two
lemmas.

2.1 Necessary Lemmas

The first lemma lets us factor M if we can find some x such that x2 ≡ 1 mod M and x 6≡ ±1
mod M .

Lemma 1. For any integers x,M > 0 such that x2 ≡ 1 mod M and x 6≡ ±1 mod M , then
gcd(x± 1,M) is a nontrivial factor of M .

Proof. Since
x2 ≡ 1 mod M, (12)

this implies that
x2 − 1 ≡ 0 mod M. (13)

Factoring the left side gives
(x− 1)(x+ 1) ≡ 0 mod M. (14)

Since M is divisible by (x− 1) and (x+ 1), clearly gcd(x± 1,M) 6= 1. Furthermore we know that
x 6≡ ±1 mod M , so M does not divide x ± 1. Therefore there is at least one factor of M that is
not in (x− 1), and at least one that is not in (x+ 1). Thus gcd(x± 1,M) is some nontrivial-factor
of M .

3



The second lemma, combined with our order-finding algorithm, lets us find the x that we use
in lemma 1.

Lemma 2. If M has k distinct prime factors then the probability that orderM (y) is even and that
yorder(y)/2 6≡ ±1 mod M is at least 1− 1/2k−1, where y is picked uniformly at random from the set
of integers modulo M that are relatively prime to M .

Proof. We omit the proof, but it uses the Chinese remainder theorem. The full proof can be found
in appendix four of [1].

2.2 Factoring Algorithm

We can now describe our factoring algorithm for an integer M with k distinct prime factors. If
k = 1, then M must be either prime or a prime power. However, checking that M is prime or prime
power can be done in polynomial time. If M is composite, we pick y ∈ {1, 2, . . . ,M − 1} uniformly
at random.

If gcd(y,M) 6= 1, then we are done, as the GCD is the nontrivial factor. Otherwise, we check
that orderM (y) is even, and if so, compute gcd(yorderMy/2 + 1,M) and see if this is a non-trivial
factor of M . If so, we are done. Otherwise, we pick another y and try again.

This algorithm can only fail if the orderM (y) is not even or yorder(y)/2 6≡ ±1 mod M , which
occurs only with probability of 1/2k−1. As k is at least 2, the probability of failure is at most 1/2.

3 Breaking RSA

Besides purely academic interest in factoring numbers, there are also some applications for this
algorithm, particularly in cryptographic systems. The best known is breaking RSA public key
system, which is widely used in electronic commerce protocols.

If Bob wants to communicate with Alice using the RSA system, Alice will generate two keys.
The first is a public key, which she will publish and Bob will use to send messages. The second is
a private key which Alice shares with no one.

3.1 Construction

The private key consists of two distinct primes p and q and an integer d such that

gcd (d, (p− 1)(q − 1)) = 1. (15)

p and q are typically chosen at random in a manner that an eavesdropper would have difficulty
guessing. Equation (15) implies the existence of integer e such that de ≡ 1 mod ((p− 1)(q − 1)).
Alice can classically compute e efficiently using Euclid’s algorithm.

The public key that Alice publishes consists of simply e and n, where n = pq.

3.2 Encryption

Suppose that Bob wants to send a message M to Alice where M ∈ {0, 1, . . . , n−1}, but is concerned
somebody might eavesdrop on the communication channel and discover M . Instead, Bob will
compute cyphertext

C = M e mod n (16)

4



and send C to Alice.
Alice then computes

Cd mod n ≡ (M e)d mod n (17)
≡ M1+k(p−1)(q−1) mod n (18)

Recall Fermat’s little theorem, which states that if a prime p and an integer a is coprime with p,
then

ap−1 ≡ 1 mod p. (19)

Additionally, note that if gcd(p, q) = 1 and n = pq, then

a ≡ b mod n⇔ a ≡ b mod p and a ≡ b mod q. (20)

From these two equations, we can simplify equation (18) to

Cd mod n ≡ M mod n (21)
= M. (22)

Going from equation (21) to (22) is trivially true as M < n.
To illustrate RSA consider the following figure, which shows Bob sending a message to Alice,

but there is an eavesdropper listening in on the communication channel. Bob encrypts his message
M as C using equation (16), and sends it through the channel as shown in the figure. At this

A B

E

← (C)

Figure 1: Bob transmits C back to Alice. Alice and Eve both receive it.

point Alice can recover M using equation (22). Eve, having access to C, e and n, can in principle
recover M , but the only known ways to do so involve factoring n into p and q, for which no efficient
classical algorithms is known.

However, if Eve has a quantum computer, she can efficiently factor n, and thus recover M .
Therefore, efficient factoring breaks RSA, as we can factor n into p and q. From p and q, we can
use e to compute d giving us Alice’s private key.

This has far reaching implications, as a malicious party with a sufficiently powerful quantum
computer can break many modern electronic commerce and email encryption systems.

References

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge, 2000.

5


