CS 880: Quantum Information Processing 10/05/10

Lecture 14: Computing Discrete Logarithms

Instructor: Dieter van Melkebeek Scribe: John Gamble

Last class, we discussed how to apply order finding to efficiently factor numbers using a quantum
computer. We then outlined how this capability presents problems to certain cryptographic systems,
such as RSA. In this lecture, we will discuss a quantum algorithm for period finding of which order-
finding is a a special case. We then develop a similar algorithm efficiently compute the discrete
logarithm. Finally, we conclude by outlining Diffie-Hellman key exchange, whose security relies on
the discrete logarithm being difficult to compute.

1 Period finding

Suppose that we are given some function f : Z — {0,1}", and are promised that it is periodic with
period r > 0. That is, for all z, we know that f(x + r) = f(x). Further, we are guaranteed that
no value repeats between periods, so that for all s such that 0 < s <, f(z) # f(x 4+ s). Our task
is to determine the value of r. In order to develop the algorithm, we will first assume that we are
also given another integer N such that »|N. We will then relax this assumption, so that N need
only be an upper bound for r.

1.1 Special case: r divides N

First, we initialize our system in the state

[%0) = 10") 10™), (1)

where n = [log N, so that N can be represented in the first register. Next, we create a uniform
superposition over {0, ..., N — 1} in the first register. Operating on our our state with the quantum
oracle and storing its output in the second register gives us

N-1
1
1) = —= D> |x)|f(2)). (2)
UF =
Then, we observe the second register, leaving us in the state

1
|¢p2) = NI zx: |z) |2) 3)

where z is chosen uniformly at random from {f(0), f(1),..., f(r — 1)} and the sum runs over all x
such that f(z) = z. Note that there are N/r such values of x, hence the normalization. We now
call the smallest = in our sum zy and note that since f has period r, each x can be written as
x = xg + jr for an integer j. Hence, our state is

N/r—1

S w441, (4)
=0

where we have suppressed the second register, as we will not need it again. Now, we apply the
inverse discrete Fourier transform over Zy to the state, which leads to

N

ﬁ
o
" y-

r—1 N—-1

Z e—2m'(xo+jr)y/N ‘y>
7=0

1
N/]

N-1 N/r—

e—27rimoy/N § :
Jj=

Note that the second summation constitutes a geometric sum, so if ry/N is an integer,

ls) = Fy' o)

2%

e VY Iy, (5)

/N

y=0

N-1

e—27rz(w0+]7“ y/N _ Ea (6)

J=0 "
otherwise it is zero. Thus, we only ever observe a state |y) such that ry/N € Z. This means that
we observe y, a multiple of N/r, distributed uniformly such that 0 <y < N.

Now, we proceed as we did in order finding. We run the algorithm twice, generating two
outcomes y; = a(N/r) and yo = b(N/r). Since a and b are picked uniformly at random, with high
probability ged(a,b) = 1 and so ged(yp,y2) = N/r. Since we were given N, we can compute r and
we are done.

Next, we relax the assumption that r|N. Intuitively, instead of yielding only random multiples
of N/r, the above algorithm will return a distribution of values that are concentrated around integer
multiples of N/r, where the concentration will be higher for higher N.

1.2 General analysis

We now analyze the above algorithm for arbitrary » and N, where N is an upper bound for . We
start from the state

1) = Zuu (7)
Next, for analysis purposes we create a modified Fourier transform that makes sense for our periodic
function f. Specifically, if we restrict ourselves to the domain « € {0, 1,...,7—1}, we can use | f(x))

rather than |z) as our base states. This is because f is not permitted to have any duplicate values
each part of the domain. This modified Fourier transform is now defined as

r—1
f) = Z e 156w, 0

which is defined for 0 < y < r. By the general properties of the Fourier transform, we can write

r—1
1 —2mixy/r
:erz v/ fly
y=0

) (9)

for 0 < x < r. However, note that since both f and the amplitudes in (9) are periodic with period
r, expression (9) actually holds for any z. Thus, we can write (7) as

1 N-—1 1 r—1 y
_ 2mixy/r A
‘¢1> = \/—N xz::o 7‘ ;::Oe Y y)>

r—1
_ %Z <\/_ Z e—2mmy/r‘x>> f(y)> (10)

Then, we measure the second register, which gives us a y uniformly at random in {0,...,r — 1}.
Neglecting the second register, our state is now

[tha) = Z /T 7). (11)

Next, we apply a standard inverse Fourier transform over Zy to this state, in a procedure that
we identify as phase estimation with w = y/r. Hence, measuring the first register gives a state

‘;\/;>, which is concentrated around |y/r). Now, just as we did for order finding, we can apply

the continued fraction expansion to obtain r with finite probability after two independent runs. As
anticipated, the only difference between this general treatment and the special case where r|N is
that we needed to use phase estimation and a continued fraction expansion.

In order to see that order finding is a special case of period finding, consider the function
f(x) =a® mod M, which has period equal to the order of a. In fact, if we draw the period finding
circuit, we can identify an exact correspondence to the eigenvalue estimation and order-finding
algorithms:

(a) (12)

) A
Uy
0) /= A

Point (a) in the above diagram, corresponding to expression (11), is the same state as (5) in lecture
10, with w = y/r. Thus, our oracle Uy is equivalent to running the controlled powers of U in figure
2 of lecture 10 (for period-finding) and in the diagram of lecture 12 (for order-finding). Note also
that since we do not ever use the result of the lower register, measurement of it is not necessary
for the algorithm.

2 The discrete logarithm

Now, we turn our attention to computing the discrete logarithm. Suppose we are given an integer
M > 0 and a generator g of Z},, the group of all integers mod M that are relatively prime with
M under multiplication. Further, suppose that we know the order of Z},, say R = |Z},] 1

Note that this is not a further restriction, as R can be computed from the Euler totient function, and it can be
shown that the totient can be efficiently computed using the factorization algorithm.

Note that this is a cyclic group in which every element is a power of g. Further, suppose we
are given some a € Zy;. Then, our goal is to find the smallest integer [> 0 such that ¢ =a
mod M. Note that checking that we have a multiple of [is efficient, as it only requires modular
exponentiation. However, classically the best known algorithms for finding [are exponential.

In order to construct an efficient quantum algorithm for this problem, consider the function
fiZr xXZr— Zy, f(x,y) =a”¢g?y mod M. Then, we begin with the state

R-1

=3 3 o)l F) (13)

z,y=0

Note that f(z,y) = a®g¥ = ¢!**¥. Now, suppose we observe the third register, resulting in a value
g°, with b chosen uniformly from {0,..., R — 1}. Hence, our first two registers are in the state

1
|th2) = 75 (x%:EAlﬂ v) (14)

where A = {(z,y) : 0 < z,y < R and fx +y = b}, which is just
| Bl
o) = — x)|b— Lx). 15
i) = 5 2 o=t (19

Next, we apply the inverse Fourier transform over Zg to both registers, resulting in

R—-1 R-1

o) = g 3 3 ¢ SO e 1) (16)
=0 ¢,n=0
Measuring this state gives us
1 iR = —omi(é—tn)/R*
O¢n = 2572¢ ;_:0 (e) . (17)

This is now a geometric sum, so we know that we will only observe states that satisfy £ = fn mod R,
since otherwise the sum is zero. What this gives us is a uniformly chosen state |n,{ mod R) for
0 < ¢ < R. Hence, if we can compute 77!, we can extract [and we are done. For ! to exist, we
need ged(n, R) = 1, which can be shown to occur with high probability:

|Z| 1
Prlged(n,R) =1]=—"2*+>Q——). 18
[ged(n, R) =1] = 5= 2 loglog R (18)
Note that the above procedure can be generalized to other groups. Specifically, the algorithm
works for any cyclic group with unique representation such that the group operation is efficiently
computable. In the next section, we detail how the computing the discrete logarithm can pose a
threat on certain cryptographic systems.

3 Breaking Diffie-Hellman

Consider the Diffie-Hellman protocol, which enables two parties to exchange keys over an insecure
channel. The protocol is as follows:

1. The two parties (Alice and Bob) agree publicly on a prime p and a generator g for Z;.
2. Alice picks a randomly from Z; and sends A = g* mod p to Bob.
3. Bob picks b randomly from Z; and sends B = ¢” mod p to Alice.

Now, the key is K = ¢g°b mod p. Note that K = A’ mod p = B* mod p, so that both Alice and
Bob can easily generate K. However, since a and b were never transmitted and were random, it is
thought that it is classically difficult to to construct K due to the discrete logarithm being hard to
compute.

While this remains an open question, what is clear is that being able to compute the discrete
logarithm efficiently trivially breaks the system. The best known classical algorithm for computing
the discrete logarithm takes time 20(") on n-bit inputs, while for factoring it takes time 20(”1/3),
so classically this protocol seems more robust than RSA. However, this system of key exchange is
still vulnerable to an attack by a quantum computer. This also means that certain cryptographic
systems, such as El-Gamal encryption, are broken by a quantum computer, as well. Further, many
more sophisticated key exchange protocols involving groups over elliptic curves are still vulnerable
to a quantum computer, as the quantum algorithm for the discrete logarithm breaks them, too.

In the next lecture, we will discuss the hidden subgroup problem, which is sufficiently general
to encompass almost all the applications of efficient quantum algorithms we have seen so far. We
will then develop an efficient quantum algorithm to solve it for finitely generated Abelian groups.

