CS 880: Quantum Information Processing 10/7/2010
Lecture 15: The Hidden Subgroup Problem

Instructor: Dieter van Melkebeek Scribe: Hesam Dashti

The Hidden Subgroup Problem is a particular type of symmetry finding problem. It captures a
lot of quantum algorithms and instantiations of this problem give many of the previous problems
that we have seen in this course. In this lecture we see how we can cast the previous problems
as instantiations of this problem. We also consider an efficient Quantum algorithm to solve the
Hidden Subgroup Problem on finite Abelian groups.

1 The Hidden Subgroup Problem

Let us start with the definition of the Hidden Subgroup Problem (HSP):

Definition 1. Given access to an oracle function f : G — R, from a known group G to its range,
such that there exists a subgroup H < G such that Vx,y € G, f(z) = f(y) & Hx = Hy. Problem
is to find a set S of generators of H.

This means that the function f, returns the same value iff x and y belong to the same coset of
H within G. Note that
Hr=Hy<yz e H

and in general we can have right or left coset (in this case right coset). Clearly, when we consider
an Abelian group G or the subset H is a normal subgroup of G, there is not any difference between
right and left cosets of H, where Hx = {hx|h € H}.

Before delving into efficient algorithms for finding a set S of generators for H, a more basic question
is whether a small set of generators exists. The answer is ”yes” and its proof comes as an exercise.

Exercise 1. Show that for every subgroup H of G, there exists a set of generators of size at most
log, |H|.

We will use (S) to denote the set of elements generated by S.
Next, we show that how HSP captures many of the problems we have seen before.

1.1 Deutsch Problem

The Deutsch problem is a simple instantiation of the HSP problem. Let us recall the problem:
For a given f: {0,1} — {0,1} the problem is whether f(0) = f(1) or not.

In order to cast this as an HSP instantiation, we define the group G = Zs and we also need to
define our oracle function, which is the same as the function f in the Deutsch problem. When the
function f is constant, the set H equals G and otherwise it is {0}. Hence, the HSP problem would
be distinguishing between

H = {0} vs H = Zs, where, G = Zs.

1.2 Bernstein-Vazirani Problem

Let us recall the problem; for a given
f:{0,1}" - {0,1} :x — ax + b

and the challenging goal was to find a.

First let define our group G = Z3, and the oracle function is as the same as the f function. Now
we use the definition of the subset H to cast it, which is looking for f(z) = f(y). Hence, in the
Bernstein-Vazirani Problem, for all the elements of H we should have a(z — y) = 0:

H :={z € Zy|az = 0}.

Once we have a set of generators for H, we can find a as the nontrivial solution to a homogeneous
system of linear equations.

1.3 Simon’s Problem

In Simon’s Problem we were given a function f : Z% — R such that f(z) = f(y) @ 2 +y =s. The
function is either one-to-one (s = 0) or two-to-one (s # 0) and the goal was to finding the shift
s. In order to cast it, the group G = Z%, the oracle function is this f function, and the H is the
subgroup generated by S = {s}.

1.4 Period Finding

For a given function f :Z — R, we knew that f is periodic with period of r,

(V) f(z) = f(z+7), and (VO <z <y <r)f(z) # f(y)

and the goal was to find the period r. Hence, the group G = Z, the oracle is the same as f function,
and H is a subgroup generated by 7.

We note that the Order Finding Problem is a special case of the Period Finding Problem and
falls in this category of HSP problems, as well.

1.5 Finding Discrete Logarithms

Let us first setup the problem by introducing notations; an integer M > 0, g generator for Z3,,
a € Zy;, R =|Z3,|, used to find smallest [, such that ¢ =a.
The function we used in the previous lecture was f : Zg X Zr — Zp : (x,y) — a*¢g¥ mod M.
This function was designed such that it is constant on the coset of H = ((1,—[)) in G = Zg x Zg.
Indeed,

f@ry) = f(w2,92) & loy +yn = log +y2 = Uz — 22) = —(y1 — v2)-

We use the function f as a HSP instantiation and can extract [as the generator of H.

1.6 Graph Automorphism and Graph Isomorphism

For a graph A(V,E), say with |V| = n, a graph automorphism is a relabeling of vertices which
preserves the edges. The graph automorphism problem for A is to find a set of generators for the
group of automorphisms Aut(A) of A. We can cast the problem as an HSP over the group G of
all permutations of {1,2,...,n}, i.e., G is the symmetric group S,. In addition, our function f
should be constant on the automorphisms of G and the way that we can define it, is that for a
permutation 7, f(7) = 7(A).

F(7) = f(o) & 7(4) = o(4)
& (o7m)(A) = A
& ot € Aut(A)
< cAut(A) = mAut(A)

We note that, in this case the group G is not an Abelian group and the subgroup H = Aut(A) is
not always normal. Based on the above definition our subgroup is a left coset.

Hence, the Graph Automorphism Problem can be cast as an instantiation of HSP problem. Next
we consider the Graph Isomorphism Problem.

The Graph Isomorphism Problem reduces to The Graph Automorphism Problem
Here, we claim that if there is an efficient algorithm to solve the Graph Automorphism Problem
we can use it to solve the Graph Isomorphism Problem.

Two connected graphs A; and Ay are isomorphic iff there exists an automorphisms of A;UAs

that maps a vertex from A; to a vertex from As. Given a set of generators for Aut(A;UAs), we
can check the latter condition by verifying that there is a generator that maps a vertex from Ay to
a vertex from As.
In the general case, in which A; and As are not connected graphs, we can add a node to each graphs,
connect the new nodes to every other vertex in their associated graphs, and make a connected graph.
Actually, the new nodes have maximum degree in each graph. Next, by adding an extra node to
each graph which is only connected to the new node, we can handle the case that the graphs are
full-connected. Then, if we can find a permutation which maps one vertex from one graph to a
vertex from another graph and also preserves edges, the graphs are isomorphic.

A1

Figure 1: The extra nodes are shown with filled circles and new edges are shown by curves. We
only showed some of the new edges to show general idea of using extra vertexes.

2 Efficient Quantum Algorithm for The Hidden Subgroup Prob-
lem Over Finite Abelian Groups

Each finite Abelian group is isomorphic to the direct sum of some cyclic groups
k
- Pz
j=1

In lecture 8 we developed the Fourier Transform over such G, which was a mapping from the
standard ¢ basis into orthonormal basis that maps convolutions into the point wise products. We
use the Fourier Transform here, because the Fourier Transform of a group interacts very nicely with
the symmetries in the group. In particular, it perfectly works for a coset state |Hg), which is the
uniform superposition of all elements of the coset H,

|H r};!hg

Now, let us complete the Fourier Transform of a coset state

F!Hg>:¢%zrz><y (1)

heH yeG
\/W Z; Xy(9 (hz;I Xy(h))), (2)
ye S

where,

Xy(h) T

3 wlh) = {'H' Ju et

Exercise 2. Show that

=0 otherwise

heH
where
a yjih
= G|(Vhe H) Y =
={yeGl(vhe Z:: N,
Plugging in Exercise 2 into Equation (2) gives us:
F|Hg) ,G Z Xy(9) [y) - (3)

yeHL

This is the reason of using the Fourier Transform; we started with the coset state H, of all
elements and by using the Fourier Transform we get an equally weighted superposition over HL.
In particular, if ¢ = 0 we get the coset state which is a uniform superposition over H-.

The quantum algorithm for solving the HSP over G starts with the uniform superposition over G:

&) = L

By applying our blackbox fo f we obtain

w% S J5) £ () -
xeG

Next, we observe the second register | f(z)), which leaves us in the first register the coset state |Hg)
for a uniformly at random chosen g € G.
The next step is applying F~1, which by Equation (3) gives us:

\Z,‘ S %@)

yeH+
Then, we observe the first register to get a uniform y € H+.

Lemma 1. When we run these steps log |H| times and collect the y’s, then

Pr[<y17 Y2, ylog|HJ-|> = Hl] > 5*7
where 6* is a universal positive constant.

The proof is the same as what we explained for Simon’s problem in Lecture 5.
When we find a set of generators for H+, we can use it to find (H L)L to get the hidden subgroup H
by solving a linear system of modular equations. This way we solve the HSP over a finite Abelian
group G in poly-logarithmic time in |G|.

To solve the problem over finitely generated Abelian groups that are not finite, we perform a
similar process as we did for the Period Finding problem.

3 Hidden Subgroup Problem for Non-Abelian Groups

In general, the HSP over any finite group G can be solved using only polylog(|G|) many queries
to the blackbox f. This is something we will prove in the next homework. However, this does not
mean that the overall algorithm runs in polylogarithmic time in |G|. In fact, we only know how to
do the latter for a few non-Abelian finite groups. We do not know it for the following groups, for
which efficient solutions to the HSP would have interesting consequences.

1. Dihedral Groups (Dy): The group Dy consiste of the symmetries of a regular N-gon
(rotations and reflections). A solution to the HSP problem on the Dihedral groups that would
allow us to solve the g(N)-unique SVP (Shortest Vector Problem) for polynomial functions
g(N). The SVP is a Lattice Problem on a real N-dimensional space with N basis vectors,
where every element in the lattice is a linear combination of the basis vectors with integer
coefficients. The SVP asks for a shortest nonzero vector in the lattice. The SVP does not
have a unique solution because for every vector in the lattice its minus is also in the lattice.
The unique SVP is a promise version of SVP in which we are told that the solution is unique
up to the sign. The term “g(/V)-unique” means that the second shortest lattice vector up to
sign is of length at least g(N) times the length of the shortest nonzero lattice vector. Solving
the g(IN)-unique SVP for polynomial g(V) is considered hard in the classical setting, and
is used to design lattice-based cryptosystems. Efficiently solving the HSP over the dihedral
group would break those cryptosystems.

2. Symmetric Group: As we saw, Graph Isomorphism reduces to the HSP over the symmetric
group, and the coset states |Hg) contain enough information to solve the problem in principle.
However, it turns out that Fourier sampling loses that information. More specifically, there
are positive and negative instances of Graph Isomorphism for which the dsitributions that
result after Fourier sampling are exponentially close. This means we would need exponentially
many runs in order to have a good chance of distinguishing the positive from the negative
instances.

Now, we are done with the Hidden Subgroup Problem and in the next lecture, we will talk
about ”Quantum Walks”.

