
CS 880: Quantum Information Processing 11/2/2010

Lecture 24: Zero Knowledge

Instructor: Dieter van Melkebeek Scribe: Tyson Williams

Last lecture, we discussed cryptographic protocols. In particular, we gave a quantum protocol
for secret key exchange that is secure in an information theoretical sense provided there is a secure
public classical channel. We also discussed bit commitment and showed that no quantum protocol
has information theoretic security. Today we will discuss zero knowledge systems and give an
example of a classical zero knowledge protocol that remains zero knowledge even in the quantum
setting.

1 Interactive Proof Systems

To introduce zero knowledge, we first need to introduce the notion of an interactive proof system.

Definition 1. An interactive proof system (IPS) for a language L is a protocol between a compu-
tationally unrestricted prover P and a probabilistic polynomial-time verifier V such that on input
x, which is available to both parties,

(∀x ∈ L) Pr [(V ↔ P)(x) accepts] = 1 (completeness)

(∀x 6∈ L)(∀P ′) Pr
[
(V ↔ P ′)(x) accepts

]
≤ 1

2
(soundness)

where (V ↔ P)(x) means “the verifier’s view while running the protocol with P on input x.”

The view of the verifier contains his coin flips, communication received from the prover, and
communication sent to the prover (although this last type of communication can be recreated by the
verifier using the same random bits). The completeness does not have to be perfect (that is, equal
to 1) but we will only discuss such IPSs. If soundness of 1/2 is too high, just repeat the protocol
a polynomial number of times for exponentially small soundness. The soundness condition must
hold for all provers P ′, even ones that deviate from the protocol and try to convince the verifier
that x is in the language when it is not.

An IPS is a generalization of the proof system associated with the class NP. For NP, the prover
provides the witness as the proof and the verifier checks it deterministically in polynomial time.
The difference here is that the verifier is allowed randomness and may interact with the prover
several times. Without the randomness, multiple interactions is not more powerful.

An example of an IPS is, of course, standard NP proofs. An interesting example is GraphNon-
Isomorphism. We do not know if this problem is in NP, but it has a very simple IPS. A yes instance
is a pair of graphs G0 and G1 that are not isomorphic. If the number of vertices in the graphs
differ, then the verifier does not need the help of the prover, so let both graphs have n vertices. The
verifier picks a bit b ∈ {0, 1} and σ ∈ Sn (both uniformly at random), sends σ(Gb) to the prover,
and asks the prover to state which b he used. If the prover responds correctly, then the verifier
accepts; otherwise, he rejects.

If the graphs are not isomorphic, then the prover is always be able to correctly identify b because
σ(Gb) is only isomorphic with Gb and not with Gb. Thus, this IPS has perfect completeness. If the

1

graphs are isomorphic, then the prover has no way of knowing which graph Gb was selected: Given
any graph he received from the verifier, the probability that b = 0 is 50%. Whatever the prover
does, he will be correct with probability 1/2, which matches our soundness bound.

In general, any language L has an IPS iff L can be decided in polynomial space. That L has
an IPS implies that L ∈ PSPACE is easy. The other direction is a nontrivial result of complexity
theory.

2 Classical Zero Knowledge

2.1 Informal Definition

A zero knowledge interactive proof system (ZKIPS) is a special kind of IPS. There is an additional
condition, namely, when x ∈ L, the verifier does not learn anything other than being convinced
that the x is indeed in L. In an IPS, the soundness condition protects the verifier from accepting
an incorrect claim. In a ZKIPS, the new condition protects the prover from having to reveal any
information (other than the correctness of the claim). When the prover follows the protocol for an
input x ∈ L, the verifier will learn nothing beyond the fact that x ∈ L.

Most standard NP proofs are not zero knowledge under standard complexity theory assumptions
like P 6= NP. Consider the standard NP proof that a graph is 3-colorable. The proof is a 3-coloring.
Intuitively, this is not a zero knowledge proof system because the verifier has learned more than
just the fact that the graph is 3-colorable. The verifier now knows a 3-coloring, which he is unable
to compute under the assumptions. Now the verifier can act as the prover and convince a different
verifier that this graph is 3-colorable, something that he could not have done previously.

2.2 Motivation

A ZKIPS can be used for authentication. The most popular form of authentication today is via
a password that is given to the verifier. Anyone who watches the prover enter the password has
broken the security. They can now successfully authenticate as the prover. If the authentication
used a ZKIPS and the prover follows the protocol, then anyone can watch the prover’s interaction
with the verifier, but they will learn nothing besides the fact that prover is who he says he is. In
particular, no one will be able to authenticate as the prover (unless they were able to previously).
This holds even for the computer system that the prover was using to communicate with the verifier.

Cryptographic protocols typically require secret keys for various parties. We would like to know
that all parties correctly follow the cryptographic protocol, but to know this for certain requires
knowledge of their secret key. Instead, we can phrase it as an NP question by saying, does there
exist a secret key that would have caused the behavior we observed in the other party. Now we can
use a ZKIPS to be convinced of this fact without learning the value of the secret key.

2.3 Formal Definition for a ZKIPS

We formalize the property of zero knowledge for an IPS in a strong way – that whatever can be
efficiently computed from some prior knowledge and interaction with the honest prover on any
input x ∈ L, can be efficiently computed from the prior knowledge without interaction with the
prover.

2

Definition 2. A zero knowledge interactive proof system (ZKIPS) for a language L is an inter-
active proof system between a prover P and a verifier V where for all probabilistic polynomial time
verifiers V ′, there exists a probabilistic polynomial time simulator SV ′ such that

(∀x ∈ L)(∀a ∈ Σ∗) (V ′ ↔ P)(x, a) ∼ SV ′(x, a)

where the relation ∼ between the two distributions can take one of three meanings:

1. the distributions are perfectly identical, which is called perfect zero knowledge,

2. the distributions are close in the L1 norm, which is called statistical zero knowledge, or

3. the distributions are computationally indistinguishable to a probabilistic polynomial time ma-
chine, which is called computational zero knowledge.

In this definition, SV ′ simulates the interaction between P and V ′, and a represents the prior
knowledge.

Let’s discuss why this definition is what we want. The only source the (dishonest) verifier V ′

has to gain any information is his view of the interaction with the prover, which is denoted by
(V ′ ↔ P)(x, a). However, the definition says that V ′ can instead ignore the prover and gain the
same information by running SV ′(x, a), which does not require interaction with the prover. The
verifier is able to do this since SV ′ is also a probabilistic polynomial-time algorithm.

2.4 Examples of a ZKIPS

With such strong definitions, there is the risk that no examples exist. However, our definition is
not that strong. We give two examples of ZKIPSs, one for GraphIsomorphism (unconditionally)
and one for 3-Colorability (assuming bit commitment).

We intuitively argued above that the standard NP proof that a graph is 3-colorable is not zero
knowledge. The same reasoning applies for the standard NP proof that two graphs are isomorphic,
which is the isomorphism. Note that formally proving those claims would imply separations lie
P 6= NP, and is therefore beyond the current techniques of complexity theory. In contrast, proving
that a protocol is zero knowledge just requires a construction like the ones below.

2.4.1 Graph Isomorphism has a ZKIPS

The input is two graphs G0 and G1, both with n vertices.

1. The prover picks b ∈ {0, 1} and σ ∈ Sn uniformly at random and sends H = σ(Gb) to the
verifier.

2. The verifier picks c ∈ {0, 1} uniformly at random and sends it to the prover.

3. The prover picks some ρ ∈ Sn and sends it to the verifier.

4. The verifier accepts iff H = ρ(Gc).

Suppose the graphs are isomorphic, say G0 = π(G1). Then the completeness is perfect because the
prover will pick ρ to be

• σ when b = c,

3

• σ ◦ π when 0 = b 6= c = 1, and

• σ ◦ π−1 when 1 = b 6= c = 0.

The soundness is exactly 1/2 because the only way for the prover to send a valid isomorphism when
the graphs are not isomorphic is when b = c, which happens with probability 1/2. We will show
that this protocol is perfectly zero knowledge by giving the simulator SV ′ on inputs 〈G0, G1〉 and
a.

The simulator SV ′(〈G0, G1〉, a) begins by running the same actions as the prover in step 1. In
step 2, it behaves like V ′ to get the bit c. If b = c, output (H, c, σ). If b 6= c, start over.

When SV ′(〈G0, G1〉, a) succeeds and gets b = c, the output distributions are identical since
SV ′(〈G0, G1〉, a) followed the protocol. Conditioned on H and c, the probability that b = c is
1/2, so the expected number of iterations until SV ′(〈G0, G1〉, a) succeeds is 2. Thus we have a
probabilistic, expected polynomial time simulator, which is good enough to achieve prefect zero
knowledge. If a definite runtime is required (instead of an expected one), then we can modify
SV ′(〈G0, G1〉, a) to obtain statistical zero knowledge by iterating some large but constant number
of times before outputting some fixed string if all iterations failed. This distribution will be very
close to the actual distribution created by the protocol as required.

2.4.2 3-Colorability has a ZKIPS

A ZKIPS exists for 3-Colorability assuming bit commitment. Last lecture, we showed that
no bit commitment protocol has information theoretic security, but such protocols do exists for
the classical computational setting under computational assumptions, like the existence of one-way
functions. Note that it is better to base a ZKIPS on hard problems because the zero knowledge
property only guarantees that a computationally efficient party cannot do anything more after
running the protocol than before. If the underlying computational problem is easy, then there is
no need for interaction to break the security. For that reason, zero knowledge protocols based on
3-Colorability are safer than those based on GraphIsomorphism, as the former problem is
NP-complete but the latter is believed not to be.

Suppose the prover has a 3-coloring γ : V (G)→ {R, Y,B} of the input graph G. The protocol
then proceeds as follows.

1. The prover selects a uniformly random permutation π of {R, Y,B}, commits to π(γ(v)) for
all v ∈ V (G), and sends those commitments to the verifier using the bit commitment scheme.

2. The verifier then selects (u, v) ∈ E(G) uniformly at random and sends the edge to the prover.

3. The prover checks that (u, v) is indeed an edge in E. If (u, v) 6∈ E, the prover aborts. If
(u, v) ∈ E, then the prover continues the protocol by revealing a = π(γ(u)) and b = π(γ(v)).

4. The verifier accepts iff a, b ∈ {R, Y,B} and a 6= b.

If γ is a valid 3-coloring, then the verifier will always accept since the colors assigned to adjacent
vertices are different choices of R, G, and B, so we have perfect completeness. If G is not 3-colorable,
then there exists at least one edge where the incident vertices have the same color or one has an
invalid color. Catching the prover in the case that all colors are valid but there is exactly one
edge with incident vertices of the same color is the harder case to detect, which happens with

4

probability 1
|E| , so our soundness is at most |E|−1

|E| . This argument also relies on the provers bit
commitments. After the verifier picks the edge (u, v), we cannot allow the prover to change to a
coloring that is locally valid. In order to boost our confidence, we can repeat this protocol poly(|E|)
times to achieve another protocol with soundness of at most 1/2. Furthermore, this protocol is zero
knowledge, which we show by constructing the simulator SV ′ on inputs G and a.

The simulator SV ′(G, a) begins by running the same actions as the prover in step 1. In step 2,
it behaves like V ′ to get the pair (u, v). If (u, v) 6∈ E(G), abort. If (u, v) ∈ E(G), then output two
distinct colors from {R, Y,B} uniformly at random.

When the verifier does not cheat and selects a pair of vertices that form an edge in G, two colors
are revealed. Conditioned on the bit commitments and the edge (u, v), these two colors are fixed.
However, these two colors are computationally indistinguishable from two distinct colors selected
uniformly at random because the verifier does not have the computational ability to break the
security of the bit commitments. Thus, this simulator proves that the protocol is computational
zero knowledge.

Notice how simple this ZKIPS is. Every step only contains basic computations. This protocol
could easily be implemented on a smart card. Also note that it is crucial that the prover check that
the verifier’s pair (u, v) is an edge. Without the check, this protocol is zero knowledge iff NP = RP.

3 Quantum ZKIPS

In a quantum IPS, the prover and verifier can perform quantum computations and their communi-
cation can be quantum. The prior knowledge will now be modeled by a quantum register |α〉. We
will now prove the following theorem.

Theorem 1. The zero knowledge interactive proof system for GraphIsomorphism remains per-
fectly zero knowledge in the quantum setting. Furthermore, the simulator runs in worst-case poly-
nomial time.

A theorem like this is important because it says that the prover can continue to use a cheap,
common classical computer and remain secure against a dishonest verifier who has the power of
quantum.

Proof. Since the verifier can observe every message from the prover, the arguments for the com-
pleteness and soundness from the classical setting still hold. What remains is to show that this
protocol is still zero knowledge, which is not obvious.

Why does our argument from the classical setting fail? It is because of the prior knowledge.
The standard simulation procedure runs the basic simulator until the first success. For each trial
we need a fresh copy of |α〉, but the no cloning theorem forbids copying |α〉. Another idea is
to run the protocol backwards and try to recover |α〉. However, checking for success involves a
measurement, so we will not be able to recover |α〉 exactly. We will show that the modified state of
|α〉 obtained by rewinding after a failed attempt nevertheless allows us to rerun the basic protocol
with high probability of success, and keep doing so until the first success. The key property we need
of the classical zero knowledge protocol is that the probability of success of the basic simulator is
independent of |α〉, namely p = 1/2 in the case of the protocol for graph isomorphism.

By assuming that SV ′ postpones all measurements until the end, we can represent SV ′ as a
unitary matrix U applied to |α〉 |0m〉 followed by a projective measurement (P0, P1), where P1

corresponds to success. Of course U also acts on the input, but this will not affect the analysis.

5

For all |α〉, we have

‖P1U |α〉 |0m〉 ‖22 = p. (probability of success)

and

‖P0U |α〉 |0m〉 ‖22 = 1− p. (probability of failure)

We can rewrite the left-hand side of the latter equation as

〈α| 〈0m|U †P †0P0U |α〉 |0m〉 = 〈α| 〈0m|U †P 2
0U |α〉 |0m〉 = 〈α| 〈0m|U †P0U |α〉 |0m〉 ,

because a projective matrix is Hermitian and projecting twice is the same as once. Thus, we have
that for all |α〉,

(I ⊗ |0m〉)U †P0U (I ⊗ 〈0m|) |α〉 = (1− p) |α〉 .

The operator (I ⊗ |0m〉)U †P0U (I ⊗ 〈0m|) does the following to |α〉: It takes |α〉, extends it by m
zeros, applies U †P0U , and extracts the components that end in m zeros. This operator is Hermitian
and maps every |α〉 to (1− p) |α〉. The only way that can happen is if

(I ⊗ |0m〉)U †P0U (I ⊗ 〈0m|) = (1− p)I.

This follows because this operator, being Hermitian, has a full basis of eigenvectors. Every eigen-
value must be (1−p). Another way to view all of this is that the projection of U∗P0U |α〉 |0m〉 onto
components with 0m at the end is (1 − p) |α〉, which is parallel to |α〉. The latter is the property
we will actually use. Note that the independence of the success probability on the state |α〉 is what
allowed us to argue it.

Now let’s see, via a two dimensional diagram, what happens when we run our simulator SV ′ .
We start with the vector |α〉 |0m〉 which we place on an axis (see Figure 1(a)). After applying U , we
are in a state in which the observation can either lead to success denoted by |1〉 or failure denoted
by |0〉 (see Figure 1(b)). If we project and measure a 1, then we are done, so assume that we
measure a 0. This means we are now (after normalizing) in the state |0〉β0(α) (see Figure 1(d)).
Since we failed, we are going to try to return to the initial state by applying U †. There is a vector
that we can pick for the vertical axis in Figure 1(a) so that U † |0〉β0(α) lies in the plane of the
figure. From the first plane in Figure 1(a) to the second plane in Figure 1(b), the unitary operator
U caused a rotation by θ. Thus, going in the reverse direction will send us back by θ (see Figure
1(c)). Now look at the parts of U † |0〉β0(α) that end in 0m. We know that this part is parallel
to |α〉, so if we do a phase flip for all of the components which do not end in 0m, then we reflect
across the |α〉 |0m〉 axis and get some state |φ〉 (see Figure 1(e)). At this point, have a state that
is different than the state |α〉 |0m〉 we started from, but we can still use it in the simulation. If
we apply U to |φ〉, we return to the second diagram at an angle of 2θ (see Figure 1(f)). If we fail
again, we return to the state in Figure 1(c) and repeat the above process (see Figure 1(g)).

6

|α〉 |0m〉

(a) Initial state

U−→ θ
U |α〉 |0m〉
|0〉β0(α)

|1〉β1(α)

(b) Applying U

↓ Observation

θ
U † |0〉β0(α)
|α〉 |0m〉

|ψ〉

(c) Reverse Computation

U†←− |0〉β0(α)

|1〉β1(α)

(d) If the projection fails

↓ Phase Flip

θ
|φ〉
|α〉 |0m〉

|ψ〉

(e) Phase flip with |α〉 |0m〉

U−→ 2θ

U |φ〉

|0〉β0(α)

|1〉β1(α)

(f) Applying U again

↓ Observation

|0〉β0(α)

|1〉β1(α)

(g) If the projection fails

Figure 1: Two dimensional depiction of the simulator SV ′

7

Since the probability of success is the square of the projection on the vertical axis, the probability
success in the first trial is

Pr [success in first trial] = sin2 θ = p,

and the probability of success in any subsequent trials is

Pr [success in any subsequent trial] = sin2(2θ) = 4p(1− p).

In the case of graph isomorphism, the probability of success in the first trial is p = 1/2, and in the
second trial is 4p(1−p) = 1, so our simulator always halts and the running time is polynomial. Like
in the classical setting, the output distribution on success is identical to the view of the verifier.
Thus, the protocol is perfect zero knowledge.

4 Next Time

In the next lecture, we will continue our discussion of quantum interactive proofs. After this, we
will begin talking about error correction.

8

