CS 880: Quantum Information Processing 11/09/10

Lecture 26: Error Correcting Codes

Instructor: Dieter van Melkebeek Scribe: John Gamble

Last class we began talking about quantum error correcting codes, and the difficulties that arise
when trying to apply classical error correcting techniques to a quantum setting. At first, the task
seems rather daunting since in a classical setting each bit has only two possible values, while on a
quantum computer each qubit can take a continuum of values. Nonetheless, we were able to show
that it is sufficient to be able to correct only bit and phase flips and their combination. Linearity
then enabled us to correct an arbitrary error. We used this to develop a code that represented one
logical qubit as nine physical qubits, and could correct an arbitrary, single-qubit error.

Today, we will examine the Calderbank-Shor-Steane (CSS) procedure for generating quantum
codes based on classical codes. Using this, we will be able to find a seven physical qubit code to
represent one logical qubit and correct an arbitrary, single-qubit error (an improvement over our
previous nine-qubit code). Using the stabalizer formalism, it is possible to generate a five-qubit
code, which is optimal, but we will not cover that here.

1 Background on Classical Codes

A code is a mapping C : {0,1}* — {0,1}" that maps information words in the set {0,1}* to
(longer) codewords in the set {0,1}". The basic idea is that we are adding some redundancy to
become robust to some errors. Two key properties of codes are their rate p = k/n and their relative
distance 0 = d/n, where d is the minimum Hamming distance between any two valid codewords.
Since we do not want the encodings to be too expensive, good codes should have high rates. Also,
as we would like to be able to correct many errors, we would also like high relative distances. Codes
are typically denoted by (n, k) or (n,k,d).

As before, if the absolute distance d > 2t + 1, where t is the maximum number of errors that
can occur, received words that come from different codewords cannot collide and we can correct the
errors. More specifically, if we consider some received codeword r = C'(x) + e, which is an encoding
of the information word = with some error e, as long as 2 - weight(e) + 1 < d then we can recover
C(x) from r simply by choosing the closest valid codeword to r.

1.1 Linear Codes

Many codes are linear, meaning that C is a linear mapping. In this case, the absolute distance d
of the code is just the minimum weight of any nonzero codeword. To see this, first note that by
linearity the zero vector must map to the zero vector: C(0%) = 0", so d is at most the minimum
weight of a nonzero codeword. Now, suppose that two codewords, v and (3, are the closest in the
code. But then, by linearity, v = a — (is also a codeword. Since the distance between « and (is
the smallest in the code and is also the same as the distance between v and 0", which is the weight
of v, we have that d is at least the minimum weight.

Another interesting feature of linear codes is that the code generation and decoding can be done
in a generic way:

1. For encoding, use z — Gz, where GG is an n X k generating matrix.

2. For decoding, use the (n — k) x n parity check matrix P:

ye(C < Py=0. (1)

We can view P as a set of homogeneous linear equations that exactly characterize the codewords.
Also, we can think of PT as the generator matrix of the orthogonal complement of C, and its
dual code C*. Vectors in this dual code are orthogonal to all codewords in C, and are taken from
information words of length n — k.

The parity check matrix cannot only be used to detect errors, but also to correct them. For
instance, suppose that we had a received word r = C(x) + e with error e, generated from an
information word z. Then, applying the parity check matrix to r gives us Pr = 0+ Pe. Here, Pe is
called the error syndrome, as it will allow us to diagnose the error. Note that for any two e # eq,
as long as neither have weight more than (d — 1)/2, we know that Pe; # Pey. If they were the
same, then we would have P(e; —ez) = 0, so e; — ez would be a nonzero codeword (by linearity) of
weight less than d, which is a contradiction. Hence, if no more than (d —1)/2 errors, our syndrome
tells us the location of any errors that occurred.

The distance d can also be interpreted in terms of P. Specifically, d is the smallest weight of
string y such that Py = 0. In other words, d is the smallest nonzero number of columns of P that
add up to the all zero column. Linear codes are typically denoted with square brackets: [n, k] or

[n,k,d].

1.2 Examples of linear codes

The trivial example we mentioned last time is the repetition code, where we just repeat one bit a
number of times. In that case, we are trying to encode one bit, so k = 1. n is the number of times
we repeat. The relative distance is just 6 = 1, which is as good as it can be, since the only two
valid codewords are all zeros or all ones. However, the rate is p = 1/n, as bad as it can be. As
we mentioned in an earlier lecture, there are also families of codes where both § and p are positive
constants. One example is the Justesen code, but we will not develop it here.

Next, consider the Hamming codes, a class of codes defined by their parity check matrices. Take
P to have length s, with columns consisting of all nonzero strings of length s:

000 1
000 --- 1

P=10 1. (2)
| :
1 0 1 1

P has dimension s x (2° —1). Since P operates on codewords of length n, we know n = 2% — 1.
Also, since P has n — k rows, k = 2° — 1 — 5. Since it takes a linear combination of three columns
of P to form the zero vector, the code has distance 3. Hence, this is a [2° — 1,2° — 1 — s, 3] code,
and can correct a single error. Further, determining where the error occurred is very easy. This is
because for any e of weight one, Pe = i, where i is the binary representation of the location of the
error.

A common instantiation of this is for s = 3, where we obtain Hs = [7,4,3] with dual code
H3[7,3]. One can also show that in this case Hi- C Hs.

Exercise 1. Verify that H3L C Hs.

2 CSS Codes

CSS codes are a family of codes generated by a procedure for translating classical codes to quantum
codes.

Theorem 1. Suppose we have a (classical) [n,ki]-code Cy with distance d(C1) > 2t — 1 and a
classical [n, ks]-code Cy C Cy such that the distance of the dual code Cy satisfies d (C’j) >2t—1.
Then, there exists a quantum code CSS (C1,Cy) that maps k1 — ko logical qubits to n physical qubits
that can correct arbitrary errors on t qubits.

As a specific example of this, pick C; = C5- = H3. Then, ky — ks =4—-3=,t=1,andn =17,
which is a seven-qubit code that encodes a single logical qubit and can correct an arbitrary error
on one qubit.

Proof. First, note that it is enough to specify the encoding of base states, as we can then generate
an arbitrary information word from a linear combination of base states. The basis for the codewords
will all be of the form

Crta)=—— 3 ly+a), 3)

V ’02’ yECz

where z € Cj. So, our codewords are coset states of Cy. Two of these states |Co 4+ x1) and
|Co + x9) are distinct when 1 and x9 belong to distinct cosets of Cy in Cy, i.e., iff their difference
x1 — @9 € Cy. Thus, the number of available codewords is 21 / ok2 — 9k1—=k2 The question now is
how we correct errors on these encodings.

We will proceed as we did before, by showing that we can correct bit flips, phase flips, and their
combination, which is sufficient to correct arbitrary errors by linearity. We begin with bit flips,
supposing that we have a state |Co + = + €). where e is a bit flip error. Note that since we required
that Cy C (1, for each y € Cy, y+ x is also a codeword in in C. Hence, on each component of the
superposition of our coset state, we can correct for e as long as weight(e) < ¢, since Cy can correct
t errors. By linearity, this means that we can correct up to ¢ bit-flip errors on |Cy + x). Note that,
as before, this procedure does not affect phase flips.

Next, we look at phase flip errors. Recall that in the Hadamard domain, phase flips become
bit flips. Referring to our discussion of the Fourier transform of a coset state and the fact that
H®™ is the Fourier transform over Z%, we obtain the following for the Fourier transform of a valid

codeword:)
1 Z Xy($) |y> 9
\/ |C2 ‘ yeCs-

where in this case the character x,(z) = (—1)*¥. If we apply this to a superposition of encoded
states, we have

H®n|02—|—l‘> :FZ§7L |02—|—l‘> = (4)

H | 3 as|Cota) | = 30 [2 ——=x(@) |). (5)

e yect \zecr /| Cy|

If we have some phase flips before the Hadamard transform, then they map to bit flips after the
Hadamard transform, i.e., we replace |y) on the right-hand side of (5) by |y + €), where e indicates
the positions of the phase flips. As long as e has weight at most ¢, then we can correct the errors,
since C3- was required to be able to correct t errors. Next, we apply the Hadamard transform
again, which brings us back to a valid encoding.

Since phase flips are not affected by the bit flip correction, applying the bit flip error correction
procudure followed by the phase flip error correction procedure allows us to correct bit flips, phase
flips, and combined bit/phase flips on ¢ qubits. By the linearity argument from last lecture, this
means the procedure corrects arbitrary errors on up to ¢ qubits. O

As it turns out, the simple nine-qubit code we developed last time can also be viewed as a CSS
code through use of classical repetition codes.

Exercise 2. Show that the nine-qubit code we developed last time can be expressed using the CSS
formalism.

