
CS 710: Complexity Theory 1/21/2010

Lecture 2: Universality

Instructor: Dieter van Melkebeek Scribe: Tyson Williams

In this lecture, we introduce the notion of a universal machine, develop efficient universal Turing
machines for deterministic computation, and discuss two consequences: time and space hierarchy
theorems for deterministic computation, and completeness results.

1 Universal Turing Machine

A Turing machine (TM) U is called a universal Turing machine (UTM) if it is able to simulate
all other TMs: for all TMs M and inputs x, U(〈M,x〉) = M(x). A key property that leads to a
number of results is that there exist UTMs that incur a small overhead in time and space.

Theorem 1. There are UTMs UDTIME and UDSPACE such that for all TMs M and inputs x,

tUDTIME
(〈M,x〉) = O(|M | · tM (x) · log(tM (x))) (1)

sUDSPACE
(〈M,x〉) = O(log(|M |) · sM (x)), (2)

where |M | denotes the length of the description of M .

In fact, we will show that a single machine can be used for both UDTIME and UDSPACE.

Proof sketch. The main difficulty in designing UDTIME and UDSPACE is that each must have a fixed
number of work tapes while simulating machines with any number of work tapes.

First consider UDSPACE. Suppose M has k work tapes. We would like to keep the contents of
these on a single tape for UDSPACE. We call this tape the storage tape. This is done by first storing
the first cell from each of M ’s k tapes in the first k cells of UDSPACE’s storage tape, then storing
the second cell from each of M ’s k tapes in the next k cells, and so on. In general, the contents of
the ith cell from the jth tape of M will be at location k · i + j on our storage tape. Recall that
in a single step, M reads the contents of each work tape, and the locations of the tape head can
be different for each of these. So, UDSPACE must know where each of M ’s tape heads is. UDSPACE

stores this information on an additional work tape that we will call the lookup tape. UDSPACE also
must have an index tape in order to perform tape head jumps. We leave it as an exercise to verify
that UDSPACE can simulate M using these three tapes (storage, lookup, and index), and that the
simulation is as efficient as claimed.

The log factor in (1) comes from working index calculations.1 Just like the number of tapes,
the tape alphabet of our UTM may be smaller than the tape alphabet ΓM of M . However, we can
simulate ΓM using log |ΓM | ∈ O(log |M |) space, which explains where the log factor comes from in
(2).

Consider the time required to run the above simulation. For each step of M ’s execution,
UDSPACE must read the contents of the sequential access work tapes and must remember the

1Even if our UTM was of the sequential access type, the best known and highly difficult construction still produces
a log factor.

1

contents of the current cell on each of the random access work tapes. As the sequential access
tapes access locations that are at most tM (x), the address for each sequential access tape head takes
O(log tM (x)) space. We leave it as an exercise to verify that each transition function step of M takes
O(|M | · log tM (x)) steps for UDSPACE to simulate. Together with the fact that UDSPACE performs
tape head jump operations in constant time just as M does, we conclude that UDTIME = UDSPACE

is as efficient with respect to time as claimed. Notice that this analysis takes into account that
UDTIME has a random access input tape although M may have a sequential access input tape. For
simulating M that have a sequential access input tape, UDTIME incurs a log factor overhead in time
to simulate sequential access on its input tape.

A key component of the analysis of the time efficiency in the above proof is that each work tape
is only either sequential access or random access. If a single work tape were allowed to be both
sequential and random access, the analysis would fail (the counterexample in this case is a machine
M that jumps to location 2r and then performs r local operations near this address - then M runs
in O(r) time while the simulation would take time Θ(|M | · r2)). Even in this situation, a universal
machine UDTIME with similar overhead in time can be constructed by ensuring a simulation of M
where UDTIME only ever accesses tape cells with small addresses - namely O(log tM (x)). This is
achieved by keeping track of random access tape operations as (tape cell address, tape cell contents)
pairs and storing these in an efficient data structure such as a balanced binary tree.

The same trick of keeping track of random access tape operations in a data structure can be
used to convert any machine M using time t into another machine M ′ that computes the same
relation and uses space O(t). Because of how we have defined space complexity, notice that this
transformation is not trivial - a machine M can use space that is exponential in t by writing down
a large address and accessing that location on its random access tape.

The existence of an efficient UTM is a key component to a number of important results. Two
of these important results are hierarchy theorems and complete problems.

2 Hierarchy Results

A hierarchy theorem states that a TM with slightly more resources (either time or space) can com-
pute relations that cannot be computed with slightly less resources. More specifically, a hierarchy
theorem imposes a strict-subset relation between two complexity classes. That is, for two classes
of problems C and C′, a hierarchy result might yield that C′ (C. Thus, class C is computationally
more powerful than class C′.

For example, we can show that if the function t′ is sufficiently smaller than the function t, then
DTIME(t′) (DTIME(t). We prove this using the technique of diagonalization, which originated
in Cantor’s proof that [0, 1] is uncountable.

Theorem 2 (Cantor). The interval [0, 1] is uncountably infinite.

Proof. We prove this theorem by contradiction. Given any enumeration of numbers from [0, 1], we
show that it cannot contain all numbers from [0, 1] by constructing a number r′ from [0, 1] that it
cannot contain. Assume that [0, 1] is countable. If the interval [0, 1] is countable, then its individual
elements can be enumerated. Suppose we somehow enumerate all numbers from [0, 1]. Let ri be
the infinite binary representation of the ith number in this enumeration, and let bi,j be the jth bit
in ri.

2

Now, we consider the “diagonal” elements bi,i. To build r′ from these diagonal elements, set bit
i of r′ to the complement of bi,i. Since the ith bit of r′ differs from the ith bit of ri, we know that
r′ 6= ri for all i. Thus, r′ represents a number in [0, 1] but is not enumerated as some ri.

b1 b2 b3 · · ·
r1 0 1 1 · · ·
r2 1 0 0 · · ·
r3 1 0 1 · · ·
...

...
...

...
. . .

r′ 1 1 0 · · ·

Figure 1: r′ is the complement of the (bold) diagonal elements.

Actually, this isn’t quite true because every rational number has two infinite binary represen-
tations: one terminating with 000. . . and one terminating with 111. . . . We have several ways to
avoid this issue. For example, we could let all representations be in base 4, and set digit i of r′ to
be 1 if bi,i equals 2 or 3, and set it to 2 if bi,i equals 0 or 1. We could instead ensure that r′ does
not end in an infinite sequence of zeroes or ones, a construction that is more complicated.

Provided we have taken care of the issue described above, the construction of r′ contradicts
the fact that our enumeration contains every element of [0, 1], so our initial assumption is false.
Therefore [0, 1] is not countable.

The proofs of the deterministic time and space hierarchies emulate Cantor’s diagonalization
proof. The theorem requires that one of the time bounds is time-constructable, which we describe
as it appears in the proof.

Theorem 3. If t and t′ are functions from N to N, t or t′ is time-constructable, and t(n) =
ω (t′(n) log t′(n)), then DTIME(t′) (DTIME(t).

Proof. We will use a UTM to construct a contrary machine M . We build M so that for each TM
Mi running in time t′, M ’s output differs from the output of Mi on some input xi. In this way, our
contrary machine M will accept a language that no machine can accept in time t′. We must also
ensure M runs in time t.

Let µ be a function mapping inputs to descriptions of TMs with the following properties: (i)
µ is computable in linear time and (ii) each TM M ′ appears infinitely often as an image of µ. We
leave it to the reader to verify that such a µ can be constructed from any computable enumeration
of deterministic TMs. Let xi denote the ith possible input, and let µ(xi) = 〈Mi〉. Then the code
for M is as follows:

(1) Read input xi.
(2) Compute µ(xi) = 〈Mi〉.
(3) Pass 〈Mi, xi〉 to a UTM, and run the simulation as long as the total time

used by M is at most t(|xi|).
(4) If the universal Turing machine halts and rejects, accept xi.
(5) Otherwise reject xi.

3

In the above simulation, M must be able to keep track of its time usage because it cannot run
for more than t(|xi|) steps. This is where we use the time-constructability of t or t′. We define
this notion after the proof. The property we require is that M can in time O(t(|xi|)) write down
t(|xi|) many zeroes on a work tape. We use these zeroes as a clock by erasing one for each step of
execution and halting if all of them are ever erased.

Let’s assume that t is time-constructable. The proof when t′ is time-constructable is similar.
Since t is time-constructable, the discussion above shows that M can keep track of its time usage
to ensure the entire execution is O(t(|x|)). Because t(n) = ω(t′(n) log t′(n)) and the efficiency of
the UTM from theorem 1, M has enough time to perform the simulation for each M ′ running in
t′ time for all but finitely many inputs. Because each M ′ appears infinitely often as an image of
µ, there is an input for which M has enough time to complete the simulation and complement the
behavior of M ′ given that M ′ runs in t′ time.

Thus, L(M) /∈ DTIME(t′) whereas L(M) ∈ DTIME(t). Therefore, DTIME(t′) (DTIME(t).

The condition required of the time bound in the theorem is stated formally in the following
definition. It can be shown that all of the functions we are used to dealing with (polynomials,
exponential, logarithms, etc.) that are at least linear are time-constructable and those that are at
least logarithmic are space-constructable.

Definition 1. A function t : N → N is time-constructable if the function that maps the string
0n to the string 0t(n) can be computed in time O(t(n)). Similarly, a function s : N → N is space-
constructable if the function that maps 0n to 0s(n) can be computed in space O(s(n)).

We can use an identical proof to derive a hierarchy theorem for the amount of space used by
deterministic TMs, giving the following theorem. Due to the fact that the overhead in space for a
UTM is smaller than the overhead for time, the space hierarchy theorem is tighter than the time
hierarchy theorem.

Theorem 4. If s and s′ are functions from N to N, s or s′ is space-constructable, and s(n) =
ω(s′(n)), then DSPACE(s′) (DSPACE(s).

Notice that the separation in space bounds above is as tight as we could hope for, as we have
already discussed that constant-multiple differences between two functions do not change their
computational power.

As a corollary of these theorems, we know that P (E (EXP, and that L (PSPACE.

3 Reductions

Problem reducibility is central to the study of complexity. Reductions allow us to determine the
relative complexity of problems without knowing the absolute complexity of those problems. If A
and B are two problems, then A ≤ B denotes that A reduces to B. This implies that the complexity
of A is no greater than the complexity of B (modulo the complexity of the reduction itself), so the
notation A ≤ B is sensible in this context.

We consider two types of reductions, mapping reductions and oracle reductions. Mapping
reductions are more restrictive.

4

Definition 2. A mapping reduction, also called a many-one reduction or a Karp reduction, is a
function that maps instances of one problem to instances of another, preserving their outcome.

More specifically, if A and B are decision problems, then A ≤m B iff there exists some function
f : Σ∗A → Σ∗B such that, for all problem instances x ∈ Σ∗A, x ∈ A ⇐⇒ f(x) ∈ B. That is, x is in
the language of A iff f(x) is in the language of B.

Definition 3. An oracle reduction, also called a Turing reduction or Cook reduction, is an algo-
rithm to solve one problem given a solver to a second problem as an instantaneous subroutine.

A B-oracle is a hypothetical machine that can solve any instance of problem B and return its
answer in one step. An Oracle Turing Machine (OTM) is a TM with a special oracle tape, and a
specific query state. When the OTM reaches the query state, it invokes its oracle on the current
content of the oracle tape. In this state, the oracle’s input is erased, the oracle’s output is placed
on the oracle tape, and the oracle tape head is placed on the leftmost position.

For a given OTM M , MB is that machine with a B oracle. We say that A oracle-reduces to B,
denoted A ≤o B, if there exists some efficient OTM M such that MB solves A.

Given a mapping reduction f from A to B, we can give an oracle-reduction of A to B in the
following OTM:

(1) Read input x.
(2) Compute f(x) and write it to the oracle tape.
(3) Query the oracle, and return its output.

Since any mapping reduction is also an oracle reduction, oracle reductions are at least as powerful
as mapping reductions.

We denote time or space constraints on the efficiency of a reduction via superscripts on the ≤
symbol. Polynomial-time reducibility is denoted ≤P, and log-space reducibility is denoted ≤log.

Proposition 1. Let τ ∈ {m, o} and let r ∈ {P, log}. The following are true:

• Reducibility is transitive. If A ≤rτ B and B ≤rτ C, then A ≤rτ C.

• If A ≤P
τ B and B ∈ P, then A ∈ P.

• If A ≤log
τ B and B ∈ L, then A ∈ L.

Proof Sketch. The polynomial-time propositions follow from the fact that a composition of poly-
nomials is again a polynomial.

The log-space propositions require an insight. The naive approach is to compute the entire
input for the next machine and then run that machine, but this could use a linear amount of space.
Remember that when measuring the amount of space that is used, we only count the work tapes
and not the input or output tapes. Thus, computing the output of one machine before passing it
along to another effectively changes an output tape into a work tape.

To avoid this problem, we exploit the fact that we have no time restriction. We begin by
running the second machine. When the second machine needs the ith bit of its input, we run the
first machine without writing down its output until we know the ith bit of the output. Then this
bit is given to the second machine and it resumes its work.

5

4 Completeness

Another consequence of the existence of efficient UTMs is complete problems for deterministic
computations under efficient reductions. Intuitively, a problem is complete for a complexity class
if it is both within the class and at least as difficult as all other problems within the class. We
formalize the notion in the following strong sense.

Definition 4. Given a reduction relation ≤ and complexity class C, B is hard for C under ≤ if,
for every problem A in C, A ≤ B. We say that B is complete for C under ≤ if B is hard for C
under ≤ and B ∈ C.

The choice of reduction depends on the context. For example, it is known that L ⊆ P, but is P
equal to L? In this case, we use log-space reductions for the following reason: given a problem B
that is complete for P under ≤log

τ , P ⊆ L iff B is in L.
Given the connection between complete problems and complexity class collapses, it is useful

to have a variety of complete problems. For starters, we can construct complete languages out of
efficient UTMs.

Proposition 2. Let KD be the language of tuples
〈
M,x, 0t

〉
such that M halts and accepts input

x in no more than t steps. KD is complete for P under ≤log
m .

Proof. The language KD is in P because UDTIME runs with polynomial time overhead.
Suppose A is a language in P. Let N be the TM that decides A in polynomial time. Then we

can define the mapping f that takes x to
〈
N, x, 0|x|

c〉
such that x ∈ A ⇐⇒ f(x) ∈ KD. We can

hard-code N into f , and it is possible to output both x and 0|x|
c

in log space with c hard-coded
into f . Thus f(x) is a log-space mapping reduction from A to KD.

6

