
CS 710: Complexity Theory 1/28/2010

Lecture 4: Time-Bounded Nondeterminism

Instructor: Dieter van Melkebeek Scribe: Dmitri Svetlov and Baris Aydinlioglu

In the previous lecture, we discussed NP-completeness and gave some strong results pertaining
to the complexity of SAT, viz. that it is complete for NP under a reduction computable in logarith-
mic space and polylogarithmic time, and that it is complete for NQLIN (the set of NP problems
solvable in quasi- linear time) under quasi-linear time mapping reductions. The conclusion that
all naturally occurring NP-complete problems are also NQLIN-complete raised two questions: are
there any complete problems in NP that are not also in NQLIN, and if P 6= NP, then are there
NP-intermediate problems, i.e., problems that are in NP \ P but that are not NP-complete?

In this lecture, we investigate time-bounded nondeterminism more closely to address these
questions. First, we present a time hierarchy theorem for non- deterministic computation analogous
to that for deterministic computation; given more time, one can perform strictly more computation.
Second, we show the existence of NP-intermediate problems by constructing a specific (artificial)
example of one. Finally, we discuss the impact of relativization on the question of whether P = NP
and how it can be answered.

1 Hierarchy Results for Nondeterministic Computation

We showed in the second lecture that for any functions t′ and t, if t′ is sufficiently smaller than t,
then DTIME(t′) (DTIME(t). Here we prove that an analogous result exists for NTIME.

Theorem 1. If t, t′ : N → N are time bounds such that at least one of them is time-constructible
and t′(n) = ω(t(n) + t(n + 1)), then DTIME(t′) (DTIME(t).

Proof. In the deterministic setting, we used a diagonalization argument involving the clocking
of machines to show time hierarchies. For nondeterministic computation, complementation is a
complicating factor for this argument since we know of no easy way to do it efficiently; therefore,
we cannot “flip” results of specific computations in the same way we did for DTMs. So we employ
a delayed diagonalization. Here, we diagonalize all machines running within the lower time bound
t′, but rather disagreeing with each machine on some particular input, we only ensure that there is
a disagreement somewhere in an interval of inputs.

Let Mi be the machine to be diagonalized, M the diagonalizing machine, and Ii an interval of
inputs to Mi. On each Ii, M attempts to diagonalize against machine Mi (within its time bound
t) as follows. Let Ii,k denote the kth element of Ii and choose each Ii such that each element is
larger than the previous element, e.g. such that |Iij+1| = |Iij |+ 1. For all elements Ii,j except the
last one, M simulates Mi on Ii,j+1; on the last element Ii,n, M deterministically (i.e., by brute
force) simulates Mi on the first element of the interval, Ii,1, and negates the result. Thus, n must
be chosen to be sufficiently large to allow M exponentially more time than Mi needs to halt on
Ii,1. For a graphical representation of this construction (on the specific example of machine M1

and input interval I1, see Figure 1.

1

Mi

M

Figure. Simulation by M of Mi on interval I1.

I1,2I1,1

I1,2I1,1

I1,3

I1,3 I1,n−1

I1,n−1...

...

I1,n

I1,n

We now show that for some Ii,j, M disagrees with Mi. Suppose to the contrary that the
machines agree everywhere. Then in particular, M(Ii,n) = Mi(Ii,n). But M was constructed
such that also, M(Ii,n−1) = Mi(Ii,n), so M(Ii,n) = M(Ii,n−1). We can repeat this “crossing” of
simulations to obtain that M(Ii,n) = M(Ii,1). By assumption, also M(Ii,1) = Mi(Ii,1). But then,
M(Ii,n) = Mi(Ii,1), whereas by construction, M(Ii,n) = M i(Ii,1). So we obtain a contradiction,
and therefore L(M) /∈ NTIME(t′(n)).

2 Existence of NP-intermediate problems

We define the set of NP-intermediate problems as follows.

Definition 1. NPI ≡ NP \ (P ∪NPC), where NPC is the set of NP-complete problems.

These problems exist only if P 6= NP; otherwise, NPI = ∅. The notion of NP-intermediate
problems is interesting in itself because for most NP problems of practical interest, it has been
shown that the problem is in P or is NP-complete - with some notable exceptions, e.g. factoring
and graph isomorphism. We will show the existence of such problems, assuming the inequality of
P and NP, by constructing one (artificial) such problem that interpolates (in some sense) between
a problem in P and some NP-complete problem, in such a way that it is everywhere either but
overall neither.

Theorem 2. If P 6= NP, then there exists some L such that L ∈ NPI. 1

1The converse is trivially true.

2

Proof. The statement of this theorem does not specify the particular kind(s) of reduction involved,
so this proof must demonstrate this result under the strongest possible interpretation, that of
polynomial time oracle reductions. Therefore we must find a language L in NP that is not in P
such that L is not hard for NP even under ≤P

O.
To construct such a language, we use a technique similar to the delayed diagonalization used

to prove Theorem 1. We ensure that L /∈ P, i.e. that L has no polytime DTM, by forcing L to
disagree with every possible polytime DTM on some input, and also that L is not NP-hard by
forcing it to disagree with the language for SAT on some input to any possible DOTM using an
oracle for L. All that remains is to then show that L ∈ NP.

We first enumerate all polytime DTMs and DOTMs (with access to an L-oracle) as follows.
Consider the set of all input strings Σ∗ = {N1,N2,N3, ...}. Given a member Ni of Σ∗, we interpret
(alternatively, parse) it in two different ways:

(1) as a pair 〈Mj , n
k〉, where Mj is a DTM clocked by time nk. Call this interpretation Γ(Ni).

(2) as a pair 〈ML
j , nk〉, where ML

j is a DOTM with access to an L-oracle and that is clocked by

time nk. Call this interpretation Ψ(Ni).

Note that reasonable interpretations should give the desired enumeration. 2

We now construct L ∈ NP such that for i ≥ 1 we meet the conditions

(1) Ψ(Ni) fails to serve as a reduction for SAT, and

(2) Γ(Ni) decides a language different from L.

By meeting (1) we ensure that L is not NP-hard, for if it were, then there would be some polytime
oracle reduction from SAT to L, but meeting (1) over all i rules out such a reduction. By meeting
(2), we ensure that L /∈ P. Name condition (1) as C2i−1 and condition (2) as C2i.

The idea is that to meet these two conditions, we construct L so that it “interpolates” between
some language in P (for simplicity, we will choose the empty set, ∅) and SAT, i.e. such that on
some intervals of inputs L agrees with ∅ and on some others it agrees with SAT. On intervals
where L agrees with ∅, we make the interval large enough that it contains some input on which
the corresponding DOTM disagrees with SAT, satisfying condition (1), and on intervals where L
agrees with SAT, we make the interval large enough that it contains some input on which the
corresponding DTM disagrees with SAT, satisfying condition (2).

Below we give a construction that makes L satisfy these conditions; we will then modify it to
ensure that L ∈ NP.

2For instance, parse the first half of each string as the description of a TM and the second half as a time bound

for it.

3

(1) L←− ∅, y ←− ε (the empty string)
Construct L in phases; in phase i, realize conditions C2i−1 and C2i, respec-
tively.

(3) foreach phase i = 1, 2, 3, ...
(4) Since L ∈ P, for any polytime DOTM ML (with an L-oracle), there are

infinitely many inputs on which ML disagrees with SAT; in particular,
this is true for Ψ(Ni). Let w be the lexicographically smallest string after
y such that Ψ(Ni) disagrees with SAT on y.

(5) L ←− (L ∩ Σ≤|w|) ∪ (SAT ∩ Σ>|w|). That is, make L agree with SAT
beginning with strings of length |w + 1| and larger. Now L /∈ P.

(6) Since L /∈ P, for any polytime DTM M , there are infinitely many inputs
on which M disagrees with L; in particular, this is true for Γ(Ni). Let y
be the lexicographically smallest string after w such that Γ(Ni) disagrees
with SAT (and so also with L) on w.

(7) L ←− (L ∩ Σ≤|y|) ∪ (∅ ∩ Σ>|y|). That is, make L agree with ∅ starting
with strings of size |y + 1| and larger. Now L ∈ P.

It remains to ensure that L ∈ NP, which is not yet the case; in determining whether x ∈ L,
the difficulty lies in efficiently computing which of SAT or ∅ agrees with L on x. (The rest is then
an NP-computation). Given x and absent any time constraints, we could determine this by simply
running the above algorithm until x is reached. The problem is with steps (4) and (6)—it may take
simply too long (possibly exponential in |x|) to find an input y on which Ni disagrees with SAT.

The power of delayed-diagonalization techniques in dealing with this costly computation is that
if intervals can be sufficiently lengthened by the diagonalization, the later elements are so much
larger than the earlier ones that it becomes possible to use brute force to check hard-to-compute
conditions on those earlier inputs. So we modify steps (4) and (6) of the above construction by
“waiting long enough” to allow easy checking of a disagreement between SAT and Ni; specifically,
we do not begin a new interval in L until the appropriate condition for the previous interval has
been satisfied on some smaller input. Below we give a modified construction of L using the checking
procedure COND, which takes the length of the input x and returns the index of the condition that
L realizes on that length. If the returned value is odd, then L realizes C2i−1 (for some i) on x, i.e.
L agrees with ∅ on x. If it is even, then L realizes condition (2) on x, i.e. L agrees with SAT on x.

4

(1) if COND(|x|) is odd then reject
(2) else return SAT(x)

Procedure COND(n ∈ N)
(1) if n = 0
(2) return 1
(3) Compute COND(n − 1)
(4) Check the first n strings in lexicographical order to see if they

witness CCOND(n−1). Clock each check for only n steps; if no
decision is reached in this bound, conclude that no witness
was found.

(5) if a witness was found
(6) return COND(n− 1)+1
(7) else

(8) return COND(n− 1)

On a given n, COND recursively calls itself on decreasing values of n. In (4), we must compute
SAT on the lexicographically first n string to verify if Ni agrees with SAT. Since these n strings
are of length O(log n), this can be done using a brute-force check in polynomial time. Thus the
reader can verify that COND runs in polynomial time, and so L ∈ NP while still satisfying each
C2i−1 and C2i.

3 Relativization

Definition 2. Relativizing a (complexity theoretic) statement with respect to (a language) A
means giving machine involved in that statement access to an A-oracle. We say that a statement
(theorem, proof, etc.) holds relative to A if it holds when it is relativized with respect to A. We say
that a statement relativizes if it holds with respect to any language.

Example: Consider the statement

NTIME(n) (NTIME(n2), (∗)

which follows from Theorem 1. In this statement there are two types of machines - those running
in time O(n) and those running in time O(n2) - so to relativize this statement with respect to
some language A, we give all these machines access to an A-oracle. We express this by writing
NTIME(n) as NTIMEA(n) and NTIME(n2) as NTIMEA(n2).

We say that (*) holds relative to A if

NTIMEA(n) (NTIMEA(n2).(∗∗)

We say that (*) relativizes if (**) holds for any language A.
We claim that (*) relativizes, and the proof is the same as that of Theorem 1, almost verbatim—

except that whenever Mi uses its A-oracle, M does the same for its A-oracle. Thus the proof of
the theorem relativizes and therefore, so does its statement. ⊠

5

Example: Recall from an earlier lecture the language KN , containing all tuples 〈M,x, 0t〉 such that
the NTM M accepts on input x in no more than t steps. We showed then that KN is complete for
NP under ≤log

m .
Now, given a language A, we relativize KN with respect to A by defining KA

N =〈M,x, 0t〉|MA

halts and accepts x in no more than t steps. As in the above example, it is clear that the proof of
NP-completeness of KN relativizes. Therefore, for any language A, KA

N is complete for NPA under

≤log
m . ⊠

From the second example, we conclude that there exists some NOTM N such that L(NA) = KA
N .

Now consider two separate relativizations of the proof of the completeness of KN , one with respect
to a language A and one with respect to a different language A′. In the two modified proofs, the
only difference between NA and NA′ is their oracles. So we obtain the stronger result that there
exists a fixed NOTM N such that for any A we have L(NA) = KA

N . Indeed, this N is essentially
our efficient, universal NTM. We will use this in proving the next theorem.

3.1 Limits of the simulation technique and the impact of relativization on the

P versus NP question

Looking more broadly at the proof techniques used to demonstrate results in complexity theory, we
find that almost of all of these techniques (and therefore the results obtained with them) relativize.
For example, the techniques used thus far (diagonalization and delayed, or lazy, diagonalization)
all relativize, because the conceptual core of all of them is simulation. When both the simulating
and simulated machine are given access to a certain oracle, all proofs without using the oracle can
be rewritten as proofs with the use of the oracle. It is perhaps surprising just how many proof
techniques relativize—so many that one should assume (but also verify) that a given statement
relativizes unless proven otherwise.

But two important statements that do not relativize are “P = NP” and “P (NP.” This is
because there exist oracles relative to which P differs from NP, but also ones relative to which
P equals NP. This implies the disappointing result that none of the techniques we have seen so
far—and perhaps none that have yet been discovered—are capable of solving the P versus NP
question.

Theorem 3. There exists oracles A and B such that PA = NPA and PB 6= NPB.

Proof. (First half) We start with the construction of the oracle (alternatively, language) A relative
to which P equals NP. Whereas usual proofs of this fact use a PSPACE-complete language as A,
we will use an alternate one to illustrate some techniques used in oracle construction. 3 We will
construct A such that there exists a polytime DOTM MA that decides an NPA-complete language,
namely, KA

N .
Call the NOTM for KA

N NA. We want to make MA as powerful as NA. To do this we construct
A so that it contains the results of the computations of NA. In doing so, we must be careful that
when storing each such result we do not affect any computations of NA prior to that point. But
we can take advantage of the fact that on an input of length n, the longest oracle query NA can
make is of length n−1. (Recall that NA simulates the NOTM encoded by the first part of its input
for a number of steps no greater than the length of its input. But since the query takes one step

3More detail about this proof will be given in a later lecture.

6

itself, at most n− 1 steps can be used to write the query and thus only queries of length n− 1 can
be made.)

So we can construct A in phases (as in the proof of Theorem 2) such that at the end of phase i
we will have assigned the membership to A of all inputs of length ≤ i, as follows.

(1) A←− ∅
(2) foreach phase i = 0, 1, 2, ...
(3) foreach x ∈ Σi

(4) if NA accepts x
(5) A←− A ∪ x

We can now verify that this construction works as we intend—that no addition of an input to
the membership of A affects any prior step of the construction. Consider the addition of a given
input x to A made at phase i. Note that after this phase, no input smaller than |i| is added to A,
since by phase i, all inputs of length less than i (i.e. up to i − 1) have been queried by NA and
either added to or left excluded from A on the basis of the result. So the addition of string x to A
affects no computations of NA on inputs of length less than that of x, and we avoid the possible
pitfall of this construction mentioned above.

It then follows that for all x ∈ Σ∗, x ∈ KA
N ⇔ x ∈ A. With access to an oracle for A, MA can

simply query the oracle on input x and return the result. Since this can be done in linear time,
KA

N ∈ PA.
(Second half) We prove the second half of the theorem by constructing a language B that

exploits the power of non-determinism in a way that no polytime DOTM can duplicate. Consider
the language LB = {On|(∃x ∈ Σn) such that x ∈ B}. Regardless of B, LB ∈ NPB since given x,
an NOTM NB can non-deterministically guess a string of length |x| in B. So we construct B such
that LB /∈ PB.

Let N1, N2, N3, ... be an enumeration of all DOTMs clocked at running times n, n2, n3, ..., i.e.
all polytime DOTMs. Without loss of generality, let Ni have a running time of ni.

We build B also in phases; in phase i we realize the condition Ci : LB 6= L(NB
i), and we fix

the oracle on strings longer than those considered in the previous phase, to ensure that no prior
computation results are affected. The construction proceeds as follows.

(1) B ←− ∅ f(0)←− −1 foreach phase i = 1, 2, 3, ...
(2) pick an integer k such that k > f(i− 1) and ki < |Σ|k if NB

i (0k) rejects
(3) pick a string y of length k Ni has not yet queried while deciding 0k

(4) B ←− B ∪ y f(i)←− ki

In this algorithm, f(i) keeps track of the maximum length of queries Ni could have made thus
far. At each phase, we choose k large enough that strings of length k have not been set yet and so
that Ni cannot query all strings of length k. Then we run Ni on 0k and if it accepts, we do not
add any string of length k to B, which realizes Ci. If Ni rejects, then we add to B some k-length
string not yet queried by Ni, realizing Ci. We note that no polytime DOTM decides LB, and the
proof is complete.

7

4 Next lecture

In the next lecture we will move from the time-bounded setting to the space-bounded one, where
we will investigate the effects of limits on memory space on the power of computation that can
be performed. We will obtain some results indicating that the space-bounded setting is better
understood, e.g. nondeterministic space is closed under complementation, whereas the closure of
nondeterministic time under complementation is open (no pun intended).

8

