
CS 710: Complexity Theory 2/4/2010

Lecture 6: Alternation

Instructor: Dieter van Melkebeek Scribe: Ashutosh Kumar

The last few lectures were devoted to the study of the non deterministic models of computations
(NTM) and the associated complexity classes. In this lecture, we generalize this model/associated
classes of langauges to capture the notion of alternation. We start by extending the class NP to a
more general class: Polynomial hierarchy (PH). After establishing a few simple results about this
hierarchy, we describe a model of computation, called alternating Turing machines (ATM), which
captures the class PH in the same way as non-deterministic Turing machines capture the class NP.
We derive a few basic results for the classes of problems that can be solved using alternation. We
discuss a few other characterizations of the polynomial hierarchy and describe a complete problem
at each level of PH. Finally, we sketch a few results that relate the complexity classes associated
with the alternating model to some previously defined complexity classes.

1 Motivation

We have already seen that the class NP can be identified with the class of those languages which have
polynomial time verifiers. For example, although, testing a boolean expression φ = φ(p1, ..., pn) for
satisfiability (SAT) is (seemingly) hard, checking if φ evaluates to true under a given valuation, is
easy. Moreover, to check if φ is satisfiable, the number of valuations that need to be fed to the
verifier is O(2|φ|). More generally, we had the following result:

A language L ∈ NP iff there exists a constant c > 0 and a polynomial time verifier V ∈ P such
that x ∈ L⇔ (∃y ∈ Σ≤|x|c)〈x, y〉 ∈ V .

As an example of a problem which doesn’t appear to be in NP (though this is open), consider
the problem of boolean formula minimization - denoted by MIN-FORM:

φ ∈ MIN-FORM ⇔ ∀ψ(|ψ| < |φ| → ∃x(φ(x) 6= ψ(x))) (1)

The length of any formula ψ that is smaller than φ is at most |φ|. The length of a valuation x

for φ is also bounded by |φ|. Moreover, checking for a given pair (ψ, x) whether φ(x) = ψ(x) can
be done in polynomial time (It takes two SAT verifications followed by a test of equality). So one
has the following:

φ ∈ MIN-FORM ⇔ (∀y ∈ Σ≤|φ|c)(∃x ∈ Σ≤|φ|c)〈φ, y, x〉 ∈ V for some V ∈ P (2)

If we compare the quantifier complexity of the above formula describing the membership relation
in MIN-FORM, with the ones that represent languages in NP, we notice that the former (MIN-
FORM) has an extra universal quantifier - more importantly, there is a quantifier alternation. The
class NP can be thought of as the result of closing the class of predicates in P under poly-bounded
projections (arising from the existential quantifier). One may, in a similar way, consider languages
that result from applying a poly-bounded universal quantifier to predicates in NP and so on. This

1

results in the polynomial hierarchy which will be described below. It is important to note that it’s
the number of quantifier alternations followed by a predicate in P that really matters here since a
chain of existential (resp. universal) quantifiers can be replaced by one existential (resp. universal)
quantifier with a trivial reduction in the arity of the quantifier free predicate.

2 The Polynomial Hierarchy

We define a hierarchy of general complexity classes {Qp
k
|k ≥ 0}. The class Qp

k
is defined as the set

of those languages whose membership constraints can be expressed by using formulas with k ≥ 0
alternate existential and universal quantifiers, with each quantified variable of size polynomial in
the length of the input, and the initial quantifier being existential for Q = Σ and universal for
Q = Π.

A more precise description of Σp
k and Πp

k follows:

Definition 1. We say that a language L is in Σp
k if for every x ∈ Σ∗

x ∈ L⇔ (∃y1 ∈ Σ≤|x|c)(∀y2 ∈ Σ≤|x|c) . . . (Qyk ∈ Σ≤|x|c)(〈x, y1, y2, . . . yk〉 ∈ V)

for some V ∈ P and some constant c.

Definition 2. We say that a language L is in Πp
k if for every x ∈ Σ∗

x ∈ L⇔ (∀y1 ∈ Σ≤|x|c)(∃y2 ∈ Σ≤|x|c) . . . (Qyk ∈ Σ≤|x|c)(〈x, y1, y2, . . . yk〉 ∈ V)

for some V ∈ P and some constant c.

Notes: The quantifier Q for yk in Σp
k

is ∃ if k is odd and ∀ if k is even. A dual statement
holds for Πp

k
. The super-script p in Σp

k
and Πp

k
denotes the class P. There is a small notational

inconsistency. Σ is used to denote a class of problems as well as to denote the input alphabet. But
the intended usage is usually clear from context.

If k = 0, there are no quantified variables and the verifier V can decide membership just by
looking at the input. In other words, V is an algorithm for L and Σp

0 is the same as P. In the absence
of any quantifiers, there is no real distinction between existential and universal quantification. Thus,
Σp

0 = Πp
0 = P.

The definition of Σp
1 is exactly the same as that of NP given earlier and so, Σp

1 = NP. We will
shortly see that Πp

1 = coNP. It is also clear that MIN-FORM ∈ Πp
2. The following proposition

shows that Qp
k form a hierarchy.

Proposition 1. Πp
k ⊆ Πp

k+1 and Σp
k ⊆ Σp

k+1

This is trivial since one may, for example, add an appropriate quantifier with respect to a
new variable yk+1 in front of the predicate V which will be ignored by V . Since the basic classes
Σp

0 = Πp
0 = P are closed under complementation one gets the following:

Proposition 2. Σp
k

= coΠp
k

and Πp
k

= coΣp
k

Notice that the complement of a language in Qp
k corresponds to the negation of the Qp

k predicate
that represents it. This amounts to flipping the quantifiers and replacing the predicate V by its
negation.

2

Proposition 3. Σp
k
∪ Πp

k
⊆ Σp

k+1 ∩ Πp
k+1

We can transform the membership constraint for Σp
k to that of: (1) Σp

k+1 by adding a universally
quantified variable that is not used by V in the end; (2) Πp

k+1 by adding a universally quantified
variable that is not used by V in the beginning. Hence Σp

k
⊆ Σp

k+1 ∩ Πp
k+1. A similar argument

applies for Πp
k

and hence the above result holds.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

Σ
p
0 = Π

p
0 = P

Σ
p
1 = NP Π

p
1 = coNP

Σ
p
2

Π
p
2

...

Figure 1: Pictorial illustration of the polynomial hierarchy

Propositions 1 and 3 can be illustrated using Figure 1. The kth line sloping upwards bounds
languages in Πp

k and the kth line sloping downwards bounds Σp
k. Both these lines are above the

lines at the previous levels. For k = 0, the two lines collapse into each other, as P = coP.

Corollary 1. Πp
1 = coNP, since we already derived that Σp

1 = NP

One may ask if the inclusion in Proposition 1 is strict, i.e. whether Σp
k ⊂ Σp

k+1. Even the
simplest version of this question, for k = 1 (P 6= NP) is open, as mentioned in previous lectures.
The class PH is defined to be the union of {Σp

k|k ≥ 0} (equivalently {Πp
k|k ≥ 0}):

Definition 3. PH is the class of all problems in the polynomial hierarchy : any fixed number of
alternations are allowed. i.e. PH =

⋃
k Σp

k

Note: We need not include Πp
k

in the previous definition as a consequence of Proposition 2

Theorem 1. If Σp
k = Πp

k for some k ≥ 1 then PH = Σp
k, in other words, the polynomial time

hierarchy collapses to level k.

Proof. It suffices to show that for every k ≥ 1 if Σp
k = Πp

k then Σp
k = Σp

k+1 = Πp
k+1. So fix an

arbitrary k ≥ 1 and consider a language L ∈ Σp
k+1. A string x ∈ L iff for some constant c and

V ∈ P the following holds:

(∃y1 ∈ Σ≤|x|c)(∀y2 ∈ Σ≤|x|c) . . . (Qyk ∈ Σ≤|x|c)(Qyk+1 ∈ Σ≤|x|c)(〈x, y1, y2, . . . yk, yk+1〉 ∈ V) (3)

Notice that (∀y2 ∈ Σ≤|x|c) . . . (Qyk ∈ Σ≤|x|c)(Qyk+1 ∈ Σ≤|x|c)(〈x, y1, y2, . . . yk, yk+1〉 ∈ V) is a
Πk predicate on input 〈x, y1〉. Because Σp

k = Πp
k, there is an equivalent Σp

k predicate φ on input

3

〈x, y1〉. The existential quantification in equation 3 (there’s one since k ≥ 1) can be merged with
the initial existential quantifier of φ, thus leaving a new Σp

k
predicate φ′ on input 〈x〉. It follows that

if Σp
k = Πp

k, then every Σp
k+1 language can be expressed using a Σp

k predicate. Thus, Σp
k+1 ⊆ Σp

k.
Combining this with proposition 1, we get Σp

k = Σp
k+1.

Corollary 2. If P = NP then PH = P.

Proof. Suppose P = NP. Then NP = coNP. It follows from the above theorem that PH collapses
to NP and therefore, to P.

From the above corollary, we conclude that if PH does not collapse then P 6= NP. But the
former seems to be a stronger statement. That is, even if P 6= NP, the polynomial hierarchy may
collapse to some other class. But the general conjecture in the community is that PH does not
collapse. In fact there have been results that start from some assumption and derive that PH
collapses in order to disprove the likeliness of that assumption.

3 Completeness

We provide an example of a problem that is complete in Σp
k.

Definition 4. T.Σk is the set of all true, fully quantified Σk boolean formulas - i.e. Σk boolean
sentences, where the quantifier free boolean predicate could be taken to be a (1) CNF if k is odd and
(2) DNF if k is even - This doesn’t make any difference.

Similarly, we can define T.Πk as the set of all true Πk boolean sentences.

Claim 1. T.Σk is ≤p
m-complete for Σp

k and T.Πk is ≤p
m-complete for Πp

k.

Proof. Consider a language L ∈ Σp
k

with associated verifier V . Suppose k is odd. Then the last
quantifier is ∃, and the last quantifier together with V is (∃yk ∈ Σ≤|x|c)(〈x, y1, y2, ..., yk〉 ∈ V).
This is an NP statement, so by the NP-completeness of SAT can be converted in polynomial
time into the statement (∃z ∈ {0, 1}≤|x|d)φx(〈y1, y2, ..., yk−1, z〉) where φx is a boolean formula
(depending on x) and d is some constant. Then (∃y1 ∈ {0, 1}≤|x|c

1)(∀y2 ∈ {0, 1}≤|x|c
2)...(∃z ∈

{0, 1}≤|x|d)φx(〈y1, y2, ..., yk−1, z〉) is a a T.Σk instance that is true if and only if x ∈ L.
The case when k is even is dealt with in a similar fashion by using the coNP completeness of

TAUTOLOGY.
As this reduction can be accomplished in polynomial time, T.Σk is hard for Σp

k under ≤p
m.

It’s obviously in Σp
k since the truth value of a quantifier free boolean predicate can be checked in

polynomial time.

4 Alternate Characterizations

4.1 Using Oracle Machines

Claim 2. Σp
k+1 = NPΣp

k . In other words, the set of languages in the (k+1)th level of the polynomial
hierarchy is the set of languages recognized by non-deterministic machines with access to oracles at
the kth level.

4

Proof. For k = 0, the statement is NP = NPP. NP ⊆ NPP is trivial because we can simply choose
to ignore the oracle. NPP ⊆ NP because the time complexity of the oracle will, in worst case,
increase the degree of the polynomial in the time complexity.

The statement is non-trivial for k > 0. Consider k = 1. Suppose we have a language L ∈ Σp
2.

Then, for some c > 0 and V ∈ P,

x ∈ L⇔ (∃y1 ∈ Σ≤|x|c)(∀y2 ∈ Σ≤|x|c)(〈x, y1, y2〉 ∈ V)

We can construct a non-deterministic TM M that guesses the value of y1 and tries to solve (∀y2 ∈
Σ≤|x|c)〈x, y1, y2〉 ∈ V . The latter is a Π1 formula and can be solved using an oracle for Σp

1 because
Σp

1 = co(Πp
1) and in general any language can be solved given an oracle to its complement. Thus,

L ∈ NPΣp
1 .

Suppose L ∈ NPΣp
1 . We can express that L is decidable in Σp

2 as follows:

1. Express the computation path followed by the base NP machine as a Σ1 formula by guessing
the queries made by the machine, as well as the results of the queries.

2. Express the constraints that positive query responses are valid, again by using a Σ1 predicate.

3. Express the constraints that negative query responses are valid by using a Π1 predicate. The
universal quantifier is required because in this step, we want to ensure the non-existence of a
witness to the query, rather than its existence.

Overall a Σ2 predicate expresses the decidability of L, and L ∈ Σp
2. Thus, Σp

2 = NPΣp
1 . (The right

hand side can also be written as NPNP).
Arguments for k ≥ 2 are similar.

4.2 Using Boolean Circuits

Claim 3. Any language L ∈ Σp
k

can be expressed as an exponential size boolean circuit, with k + 1
alternating levels of AND and OR gates of unbounded fan-in, with the last level having polynomial
bounded fan-in and such that each bit of the circuit description can be computed in polynomial time,
and vice-versa.

Proof. Consider a language L ∈ Σp
k with verifier V . We can construct an enormous boolean circuit

as follows: an exponential number of polynomial circuits evaluating membership in V for all possible
combinations of y1, y2, . . . yk and a specific value for x. We can make these polynomial circuits to
have only two levels by expressing the function V (x, y1, y2, . . . yk) in CNF or DNF. The outputs
of these circuits are combined hierarchically at k levels to leave a single output at the top-most
level. This output is the decision whether x ∈ L. The ith level contains an array of AND gates if yi

is universally quantified and an array of OR gates if yi is existentially quantified. The number of
gates in the ith level is equal to the number of choices for inputs y1, y2, . . . yi−1. By appropriately
choosing a CNF or DNF for the verifier V , we can merge the gates from the kth level with the top
gates from the normal form that is chosen. It can be verified that each bit is poly-time computable.

Now, consider a boolean circuit as described above with an OR gate at the top-most level.
We must construct a Σk formula to compute the language decided by the circuit, i.e. we need to
determine how many bits to guess for the ∃ and ∀ quantifiers and what the V will be. Consider

5

the top-most OR gate. Its output will be 1 if there exists a gate at the lower level whose output is
1. We can express this as

(∃G2)(output of gate G2 is 1) (4)

where G2 is a second level gate. G2 will be an AND gate. It will produce an output 1 if all the OR
gates at the third level produce an output 1. So, stmt. 4 becomes:

(∃G2)(∀G3)(output of gate G3 is 1) (5)

where G3 is any gate whose output is connected as input to the chosen G2. Since the circuit is
of exponential circuit, we can represent gates in the circuit using polynomial size indices. If we
repeatedly apply these steps, we will get a Σk predicate with the final verification task being that
of evaluating the output of the gate at the (k + 1)th level. Since each bit of the circuit description
is computable in polynomial time, we can use the choices of the indices at each level to identify the
gate that needs to be evaluated as well as the bits from the input that go into that gate. Thus,
we can evaluate the last predicate of the Σk formula in poly-time. Thus, we have a Σp

k language
corresponding to the circuit. Similarly we can construct a Πp

k language corresponding to a circuit
with an AND gate at the top-most level.

4.3 Alternating Turing Machines

In this section, we extend the class of non-deterministic Turing machines (NTM) to model alter-
nation. This model of computation will also capture the polynomial hierarchy under polynomial
time constraint. An alternating TM (ATM) can be thought of as an NTM with an extra attribute:
every non-halting state is described as being an existential state or a universal state but not both.
The transition function of this machine has the same definition as that of an NTM. A configuration
of the machine is accepting if either:

1. This is a halting configuration and the machine is in an accepting state, or

2. The current state is existential and at least one computation path from this state leads to an
accepting configuration, or

3. The current state is universal and all computation paths from this state lead to an accepting
configuration.

The machine itself accepts an input if the initial configuration is accepting. The following gives
our final characterization of Σp

k and Πp
k.

Claim 4. Σp
k

= {L|L is accepted by an alternating TM with an existential start state that runs in
polynomial time and has at most k − 1 quantifier alternations}
Πp

k = {L|L is accepted by an alternating TM with a universal start state that runs in polynomial
time and has at most k − 1 quantifier alternations}

Proof. Consider a language L ∈ Σp
k. We can construct a k stage alternating TM M with the ith

stage guessing the value of yi. To match the quantifier of the yi’s, all the states in the ith stage
must be existential if i is odd and universal if i is even. The verifier V of L does not require any
non-determinism. So, the states that simulate V can be made existential or universal depending on
k. Thus, M recognizes L and has an existential start state and performs at most k−1 alternations.

6

Similarly, we can construct an alternating TM that recognizes a language in Πp
k

and satisfies the
above constraints.

Consider an alternating TM M that performs at most k− 1 alternations. We can construct an
equivalent Σp

k or Πp
k language L as follows. If M halts in polynomial time, the time it spends in

each stage of the alternation is also polynomial. We can model the choices made by M in the ith

step as a polynomial length string yi. If ith step is existential (resp. universal), then yi is quantified
existentially (resp. universally). The verifier V has to verify that the choices made are valid for
the given input and machine M and also that the final state is halting and accepting. This can be
done in polynomial time. The resulting formula is a Σk formula if M ’s initial state is existential,
and is a Πk formula otherwise.

5 Time and Space

Using the same definition of time and space required by a Turing machine we can define complex-
ity classes Σk-TIME(t) and Σk-SPACE(s). We can also derive hierarchy results using the same
technique used earlier, namely delayed diagonalization. These results get simplified if we allow an
unlimited number of alternations. We can define ATIME(t) as the set of problems that can be
solved in time t on an alternating TM with any number of quantifier alternations. ASPACE(s) is
the set of all problems that can be solved using space s on an alternating TM with any number of
quantifier alternations.

Some results on Time and Space

Theorem 2. NSPACE(s) ⊆ ATIME(s2)

Proof. This follows from our proof of NSPACE(s) ⊆ DSPACE(s2) in last lecture. Recall that we
constructed a formula very similar to a Σk formula in our divide-and-conquer formulation of that
proof. The existential quantifier guessed an intermediate configuration (O(s) long) of the Turing
machine and the universal quantifier was used to specify two independent reachability conditions (1
bit is enough). There were O(s) such quantifiers. The final predicate verifies whether the transition
from one configuration to another is valid, which takes O(s) time since each configuration is O(s)
long. Thus the guessing stages of the machine take O(s2) time and the verification at the end takes
O(s) time, for a total running time of O(s2).

Theorem 3. ATIME(t) ⊆ DSPACE(t2)

Proof. Let M be an alternating machine running in time t. If we separate M ’s execution into
existential and universal stages, there are at most t many and each is at most t long. We begin by
simulating M as long as it remains within the first stage. For the second stage of M , we simulate it
for all possible choices from the first stage. There were at most t separate choices, so we can cycle
through all of these using space O(t). For the third stage of M , we must simulate it for all possible
choices in the first and second stages. It takes space O(t+ t) to cycle through all of these. As there
are a total of at most t stages, we can cycle through all possible guesses of M using O(t2) space.
For the guesses corresponding to an existential stage, we ensure that at least one of the guesses
results in an accepting computation; for the guesses corresponding to a universal stage, we ensure
that all of the guesses result in an accepting computation.

7

Given a sequence of guesses, we simulate M with these guesses using the space-efficient universal
Turing Machine from the first lecture. If we first convert M into an equivalent machine M ′ that
uses O(t) space, the total space usage is O(t2 + sM) = O(t2 + t) = O(t2).

Corollary 3. PSPACE = AP

Proof. From Theorem 3, AP ⊆ PSPACE. But since PSPACE ⊆ NSPACE, from Theorem 2, we get
PSPACE ⊆ AP.

Theorem 4. ASPACE(s(n)) =
⋃

c>0 DTIME(2c.s(n)). In other words, we need time exponential in
the space requirement to deterministically simulate an alternating TM.

Proving this theorem will be a homework problem.

Corollary 4. AL = P

Corollary 5. APSPACE = EXP

6 Next Lecture

Next time, we will use alternation to prove the non-existence of SAT-solvers that are both time and
space efficient. The main topic of next class is non-uniformity where we allow different algorithms
for inputs of different lengths.

8

