CS 710: Complexity Theory 2/16/2010

Lecture 7: Nonuniformity

Instructor: Dieter van Melkebeek Scribe: Mushfeq Khan & Chi Man Liu

The previous lecture introduced the polynomial-time hierarchy (PH). We encountered several
characterizations of the complexity classes X7 and IIY that make up PH, and one such characteri-
zation is in terms of alternating turing machines. In the first part of this lecture, we make use of
alternation to obtain simultaneous time-space lower bound results for SAT.

In the second part of the lecture, we introduce the notion of nonuniform computation. Among
the nonuniform models discussed are boolean circuits, branching programs, and uniform machines
with advice.

1 Time-Space Lower Bounds for SAT

Although it is unlikely that SAT can be solved in linear time, we have yet to rule out even this trivial
lower time bound. Similarly, we have yet to rule out the possibility that SAT is in L. However,
if we take time and space into consideration simultaneously, we can obtain some nontrivial lower
bounds for SAT, i.e. constraining space usage will impose nontrivial lower bounds for time usage
and vice versa.

In what follows, ¢t and s always denote functions from N to N, where ¢ is assumed to be time-
constructible and s space-constructible.

Definition 1. DTISP(¢,s) is the class of languages that can be accepted by a DTM using at most
t(n) steps and s(n) space, where n is the size of the input.

Note that DTISP(t,s) is not the same as DTIME(¢) N DSPACE(s), since if a language L is
in the former, then L must be recognized by a single machine with the given time and space
characteristics.

In the following lemma, the assumption that SAT is “easy” allows us to obtain a limit on the
time and space overhead of simulating a nondeterministic machine running in polynomial time on
a deterministic machine.

Lemma 1. Let ¢ > 1 and d > 0. If SAT € DTISP(n¢,n%) then for a > 1,
NTIME(n?) C DTISP(n% poly-log(n), n® poly-log(n))

Proof. We first consider the case when a = 1. This amounts to showing that NTIME(n) C
DTISP(n€ poly-log(n), n? poly-log(n)).

In a previous lecture, we saw that SAT is complete for the class NQLIN under <IN and
that given such a reduction, we can actually compute each bit of the resulting boolean formula
in polylogarithmic time and logarithmic space in the size of the original input. We shall exploit
this fact for the current reduction. Given a language L € NTIME(n) C NQLIN, let M be a
quasi-linear time reduction of L to SAT. Also let N be a deterministic algorithm for SAT with
the time and space characteristics assumed in the hypothesis. Now if x is a string of length n,

then M(z) is a SAT instance of length O(npoly-log(n)). Then the running time of N on M (x)
is O(n® poly-log(n)), while the space usage is O(n?poly-log(n)). Computing M (z) all at one go,
however, is not feasible, since this may exceed our space constraint (d may be less than 1). Instead
we compute the bits of M (x) on demand. Computing each bit requires O(poly-log(n)) time, an
overhead which is absorbed into the polylogarithmic factor of N’s running time. Similarly, there is
a logarithmic space overhead for computing each bit on demand, but this too is absorbed into the
polylogarithmic factor of N’s space usage.

For the case when a > 1, we utilize a technique called “padding” to reduce the problem to the
case when a = 1. Suppose that L € NTIME(n®). We define:

L' = {z#0"" | z e L}

where # is a special symbol not in the alphabet of L. Clearly, L' € NTIME(n), since given a string
y, we can check in linear time if it is of the form xz#0®*, then run the algorithm for recognizing
L on the initial segment 2. This takes O(|x|*) time, so the resulting algorithm runs in linear time.
Now by our result in the case when a = 1, L' € DTISP(n¢ poly-log(n), n? poly-log(n)). Let T
be a deterministic machine that decides L’ within these time and space bounds and let pad(z)
denote z#01*1°. Given a string = of length n, the length of pad(z) is O(n®), so the running time
of T on pad(X) is O((n®*)¢poly-log(n®)) = O(n® poly-log(n)) and similarly, the space usage is
O(n® poly-log(n)). As before, computing pad(z) all at once is not feasible, so we compute it bit by
bit on demand. It is not hard to see that this may be accomplished without incurring more than a
polylogarithmic time overhead and a logarithmic space overhead, both of which may be absorbed
into the polylogarithmic factors of T”s running time and space usage. O

The next lemma shows that deterministic computation may be “sped up” by simulating it on
an alternating turing machine.

Lemma 2. DTISP(t,s) C YoTIME(v/ts)

Proof. Let L be a language in DTISP(¢,s), and let M be a machine that recognizes L within
these time and space constraints. Without loss of generality, we may assume that M has a unique
accepting configuration ¢;. Fix an input string x of length n. The computation tableau of M on
x has t(n) rows and O(s(n)) columns. Let ¢y be the initial configuration of M on input x. Then

x € L if and only if ¢ I—S\(;g)c c1. In the proof of NSPACE(s) € DSPACE(s?(n)), we guessed an
intermediate configuration ¢/, and checked recursively that co Fas . c1/2 and ¢1/9 Fare 1. We use
a similar technique here, but this time, instead of splitting up the tableau into two parts, we split
it up into b parts, where we defer fixing the value of b for now. Let ¢(® = ¢y and ¢® = ¢;. The
computation proceeds by guessing b — 1 intermediate configurations W @ 0D and by
verifying for each 0 < i < b, that ¢(?) l—ﬁ\(;fg)c/ b ci+1) | We thus obtain:

zel « (3D, ..., D) vo<i<b) (C(z’) F3\(;;)6/1) c(”l))

The matrix of this computation is computable in time O(s(n) + t(n)/b): We simply simulate M
starting from ¢ for t(n)/b) steps. Assuming a constant simulation overhead, this takes O(t(n)/b)
steps plus an additional O(s(n)) steps to copy ¢ onto the work tape and to verify that the final
configuration reached is ¢V, So this is in fact a ¥p computation. Next, we analyze the time
required by an alternating machine to perform this computation.

The machine first guesses the intermediate configurations (corresponding to the existential part
of the above description). Each such configuration has size O(s(n)) and there are b — 1 of them, so
in total the machine spends O(b.s(n)) steps in an existential state. Next, the machine switches to a
universal state, guessing a value for i, and this clearly takes O(log(b)) steps. Combining the above
with the time required to check the matrix, we obtain a total running time of O(b.s(n) + t(n)/b).
The value of b that optimizes this running time is y/#(n)/s(n). The result follows immediately. [

The preceding lemmas allow us to prove the main theorem:
Theorem 1. If SAT in DTISP(n¢, n?) then c(c+ d) > 2.

Proof. Assume that SAT € DTISP(n¢,n?). By Lemmas 1 and 2, we have:

NTIME(n®) C DTISP(n® poly-log(n), n* poly-log(n))
d)

a(c+
C YoTIME(n~ 2 poly-log(n))
C STIMEm =T +o0)

N

Let v(a) = a(C;d) and suppose L € Yo TIME(n?@+°(M) Then,

z e L < Ty e {0, 1}|m|7(a)+o(l)Vz € {0, 1}|m|7(a)+o(l) (R(x,y,2)) (1)

where R(z,y,z) is a predicate computable in time linear in its inputs. Now the predicate in
indeterminates x and y given by

vz € {0, 131 (R(z,y, 2))

determines a Ty language L’ of pairs (x,y) and is recognized by a Iy alternating machine in time
O(|z| + |y]) = O(|z| + |z|"@+e(M) (ie. linear in the length of its inputs, but not necessarily linear
in |z| alone). The complement of L’ is a 31 language recognizable in linear time and, by another
application of Lemma 1, is in DTIME(n®, n?). The latter class is closed under complementation,
so L' itself is in DTIME(n poly-log(n), n¢ poly-log(n)) € DTIME(nc¢to) ndte(D)) So I/ is rec-
ognizable by a deterministic machine running in time O((|z| + |z[*(®@+o())eto(l)) Restoring the
existential quantification of z in the equivalence 1 brings us back to a description of L and also
shows that L is a ¥; language recognizable in O((n + n“’(“)“(l))“o(l) time. Now we pick ag large
enough so that
¥ TIME((n + nY@0)Fe))jero(l)y — 53 TIME (n(@e)e+o(l)

In so doing we obtain the containment NTIME(n®) C NTIME(n(@0)eto()) By the Nondetermin-
istic Time Hierarchy Theorem, v(ag)c > ag. By the definition of , this implies that ¢(c+d) > 2. O

Corollary 1. Suppose SAT € DTISP(n¢,n%) for constants c and d.
1. If d <1 then ¢ > 1;

2. if ¢ < /2 then d > 0.

The first statement of the corollary says that if a deterministic algorithm for SAT were to run
in sub-linear space (e.g. logarithmic space), then it would necessarily require super-linear time.
The second statement shows, in particular, that if a deterministic algorithm for SAT were to run
in linear time, then its space usage would necessarily be super-logarithmic.

We do, in fact know how to prove a slighly stronger statement - if there were a deterministic
algorithm for SAT that ran in logarithmic space, then this would preclude the possibility of any
deterministic algorithm for SAT that runs in linear time.

Theorem 2. SAT ¢ L N DTIME(n).

2 Nonuniformity: Motivation

The computational models we have seen thus far, such as Turing machines (deterministic or not),
are capable of handling problems where the same algorithm works for inputs of all lengths. We call
these uniform models of computation. In this section, we introduce models capable of handling
problems where for different input lengths, we may require a different algorithm for recognizing
strings of that length. In general, we will have no computable way (or at least, not computable
within certain resource bounds) of obtaining from a length n € N the algorithm that works for
strings of that length. We call such models nonuniform.

Nonuniformity may seem a bit odd at first sight. Indeed, uniformity is a more natural form
of computation because it resembles algorithms — finite procedures for all possible inputs. So why
are we interested in nonuniform models? There are in fact close relationships between uniform and
nonuniform models. By studying nonuniform models, we may be able to derive lower bound or
hardness results for uniform models. We will see some of these relationships in Section 4.

3 Nonuniform Models of Computation

We introduce three forms of nonuniform computation. The first two are nonuniform models —
boolean circuits and branching programs. Both of them solve instances of a specific problem with
a fixed input length. For simplicity we assume that languages are defined over the binary alphabet
{0,1}. Boolean circuits are useful in analyzing the uniform time complexity of problems; branching
programs are more useful for space complexity.

The third model is an extension of the uniform model, where we allow a nonuniform ingredient
known as advice. Advices are similar to certificates — both are additional information which speed
up computation. The difference between certificates and advices is that while certificates can vary
from input to input, all inputs of the same length share the same advice. In other words, the advice
for an input only depends on its length.

We briefly discuss the three models in the following.

3.1 Boolean Circuits

We define boolean circuits similarly to real-world electronic circuits. A boolean circuit is a directed
acyclic graph where each node is either a logic gate or an input. An input node has no incoming
edges. One of the gate nodes is designated as the output node which has no outgoing edges. Label
the input nodes z1, =2, ..., x,. Given input string x € {0, 1}", the boolean circuit computes its
output (a single bit) as follows. The bits of x are first copied to the corresponding input nodes.

Then, in topological order, each logic gate receives bits from its incoming edges, performs the
boolean operation on the bits, and sends the output bit along all its outgoing edges. The output
of the circuit is the bit output by the output node.

output

a ’ depth

sl 1) xs3 Ty

Figure 1: A boolean circuit.

For any function f : {0,1}" — {0, 1}, we say that a boolean circuit B realizes f if the output
of B matches f(x) for every input = € {0,1}". In this course we consider circuits with AND, OR,
and NOT gates with a bounded (say 2) fan-in. We define the circuit size C(f) of a function f to
be the size of the smallest (in terms of number of nodes) circuit realizing f.

We can also use boolean circuits to accept a language L. Instead of using one circuit for all
possible inputs as in uniform computation, we must use a different circuit for inputs of different
lengths. Formally, we say that a family of circuits {B;} accepts a language L if for every n € N,
B,, realizes L,, where L, is the characteristic function of L restricted to inputs of length n. We
define the circuit complexity Cr(n) of L by Cr(i) = C(L;) for all i € N.

The circuit complexity of a language can be a good measure of its uniform time complexity.
The reason is that, given a boolean circuit, we can simulate its computation by a uniform machine
in linear time. Likewise, given a Turing machine that runs in time ¢, we can “encode” its transition
function into a boolean circuit of size quadratic in ¢. Another measure is the depth of a circuit,
which equals the length of the longest path from an input to the output node. Circuit depth is
not as comparable to uniform time complexity as circuit size, since for any specific language and
an input length n, we can convert membership into a CNF or DNF, and build a constant-depth
circuit with fan-in 2". This circuit can be converted into an equivalent linear-depth circuit with a
bounded fan-in of 2.

Note: For a language L, its circuit complexity C1(n) can be considerably smaller than its
uniform time complexity t7,(n), due to the “one algorithm for all inputs” restriction imposed on
uniform computation.

3.2 Branching Programs

A branching program P is a directed acyclic graph where each node is labeled x1, x2, ..., Zn,
ACCEPT, or REJECT. Each node (except those labeled ACCEPT or REJECT) has exactly two
outgoing edges where one of them is marked 0 and the other 1. One of the nodes is designated
as the start node. The computation of P on input x € {0,1}" is as follows: Starting from the
start node, look at its label z; and follow the appropriate edge to the next node by looking at the
input string. Repeat until it reaches an ACCEPT node or a REJECT node. Note that similar to
a boolean circuit, a branching program only works for inputs with a specific length. For a function
f + N — N, we define its branching program complexity BP(f) to be the size of the smallest
branching program that accepts f.

start

RN

Figure 2: A branching program.

We can use a family of branching programs to accept a language. The branching program
complexity BPr(n) of a language L is defined by BPL (i) = BP(L;) for all : € N.

The branching program complexity of a language can be a good measure of its uniform space
complexity. Suppose we are given a branching program with v nodes. We can simulate its com-
putation on a Turing machine using O(logv) space — the space used to store the index of the
current node. Now suppose we have a Turing machine that uses space s and runs in time ¢t. We can
construct a layered branching program (a branching program whose nodes can be partitioned into
layers such that every edge goes from one layer to the next layer) with ¢+ 1 layers and O(2%) nodes
in each layer. Each node represents a machine configuration. The first layer contains a single node
representing the initial configuration. This node is the start node. Each node in subsequent layers
is labeled by the variable corresponding to the current input tape head position in its configuration.
Edges indicate valid transitions between successive configurations. A node becomes an ACCEPT
(respectively REJECT) node if it represents an accepting (respectively rejecting) configuration.
The size of this branching program is O(2°t). We see from the above simulations that there is
a roughly logarithmic relationship between the size of a branching program and space usage of
its corresponding Turing machine. Another possible candidate for measurement is the width of a
(layered) branching program, which equals the maximum number of nodes in a layer.

Note: For a language L, its branching program complexity BPr(n) can be considerably smaller
than its uniform space complexity sz, (n).

3.3 Uniform Models with Advice

The two models discussed above use a different machine for each input length, resulting in an
infinite family of machines. Our third model is similar to uniform models in that it uses a single
machine for all input lengths. We give extra power (nonuniformity) to the uniform machine by
allowing access to advice, pieces of additional information which enable the machine to handle input
strings of a particular length.

Definition 2. Let a(n) be a function from N to N. Let C be a class of languages. We define the
class

C/a(n) ={L| There exist L' € C and a sequence of strings (yn)nen, such that |y,| < a(n) and
rel < (z,y,) <L}

The sequence (y,)nen in the above definition is called the advice sequence.
To illustrate the power of machines which have access to advice strings, let’s consider the
language
L={0"|zeHALT}

where T denotes the natural number represented by the binary string 1z. This is clearly an in-
computable set. However, a machine with access to advice can compute it: let the advice sequence
encode the characteristic function of the set of natural numbers that are lengths of strings in L. In
fact, each advice string in such a sequence would be of length 1.

4 Connections Between Uniform and Nonuniform Models

In this section, we present a few results relating nonuniform models to uniform complexity classes.

P/ poly is the class of all languages which can be computed in polynomial time using polynomial-
length advice. Similarly, L./ poly is the class of all languages computable in logarithmic space using
polynomial-length advice. The next two theorems show relationships between nonuniform models
and these complexity classes.

Theorem 3. P/poly = {L | Cr(n) is polynomially bounded }.

Proof Sketch. C: Suppose L € P/poly. Let M be the polynomial-time algorithm with access to
advice that recognizes L. For a given input length n, let C,, be a circuit that computes M. The size
of C, is polynomially bounded in n. Let a,, be the advice string for input length n. By hardcoding
a, into C,,, we obtain the desired circuit.

D: If L has polynomial-size circuits, we can use the descriptions of the circuits as advice. O

A similar argument leads to the following:
Theorem 4. L/ poly = {L | BP(n) is polynomially bounded }.

We may also consider uniform boolean circuits. A family of circuits {B;} is uniform if there
exists a uniform machine which, given n, outputs the description of B,, in time polynomial in n.
Uniform branching programs are defined similarly, except that the notion of uniformity here is not
standardized and may differ by context. The following two theorems say that uniform circuits and
branching programs are indeed uniform.

Theorem 5. P = {L | L has uniform polynomial-size circuits }.

Proof Sketch. C: Let L € P and M be a DTM accepting L. We can construct a circuit for inputs
of length n by hardwiring valid transitions and constraints in the computation tableau of M. Since
M runs in polynomial time, its computation tableau has polynomial size. The resulting circuit also
has polynomial size and can be computed in polynomial time. 2: On input z, the uniform machine
computes B|;| in polynomial time, then simulates the computation of B, on z also in polynomial
time.]

Theorem 6. L = {L | L has uniform polynomial-size branching programs }.

5 Next Time

Consider the class P/ poly of problems which are solvable in polynomial time given some advice
with polynomial length. If for some NP-complete problems, we happened to have computed the
advice strings as well as polynomial-time algorithms making use of them, then we could solve these
NP-complete problems efficiently. Next lecture we will show that this is unlikely to be the case; in
particular, we will prove that if NP C P/ poly, then the polynomial-time hierarchy collapses to the
second level.

