
CS 710: Complexity Theory 2/7/2007

Lecture 8: Circuit lower bounds

Instructor: Dieter van Melkebeek Scribe: Chris Hopman, Seeun William Umboh

DRAFT

In the last lecture we applied alternations to prove some time-space lower bound results for
SAT. We also introduced the notion of nonuniform computation, and nonuniform models such as
Boolean circuits, branching programs and uniform machines with advice.

Today, we begin with a theorem that suggests that SAT does not have small circuits. Then, we
investigate constant-depth circuits.

1 If NP has small circuits, then PH collapses

Theorem 1. If NP ⊆ P/poly, then Πp
2 = Σp

2 (PH = Σp
2).

Proof. For a language L in Πp
2, we have

x ∈ L ⇐⇒ (∀y ∈ {0, 1}|x|
c

)(∃z ∈ {0, 1}|x|
c

)R(x, y, z)

where R is a predicate that can be decided deterministically in time, say, linear in its combined
input.

Since (∃z ∈ Σ|x|
c

)R(x, y, z) is a Σp
1 predicate on input < x, y >, we can reduce it to a SAT

instance and by the hypothesis, there exists a circuit CSAT that is of size polynomial in the running
time to decide R, and so of size polynomial in the size of x. Letting f denote the reduction, we can
replace the Σp

1 predicate with CSAT (f(x, y)). We would like to rephrase the formula above roughly
as follows: does there exist a circuit solving SAT such that for all strings y, the circuit accepts
f(x, y) 1?

Let V be the following recursive predicate:

(1) if ϕ has at least 1 variable then CSAT (ϕ) ⇐⇒ CSAT (ϕ|x1←0) ∨ CSAT (ϕ|x1←1)
(2) else CSAT (ϕ) ⇐⇒ ϕ is true

where x1 is the first unset variable of ϕ.
We can transform the right-hand side of the above to:

(∃CSAT with input size nc)(∀y ∈ Σ|x|
c

)[CSAT (f(x, y)) ∧ (∀ϕ of size ≤ nc)[V (CSAT , ϕ)]]

Essentially, we guess a circuit CSAT and the combined predicate checks if CSAT accepts f(x, y)
and whether or not CSAT is a valid circuit solving SAT.

Since we are evaluating polynomial size circuits, and we evaluate n times, V takes polynomial
time to check. The second universal quantifier above can be merged with the first, and then we
have a single polynomial time verifiable predicate. So, we now have a Σp

2 formula. Note that our
hypothesis is crucial in that if NP does not have polynomial size circuits, then V will always fail.

1One slight detail here: the circuit CSAT takes inputs of fixed input size only, but f(x, y) is of varying size.
However, we can simply pad f(x, y) to an equivalent instance of the required size.

1

Since we do not believe that the polynomial-time hierarchy collapses, this is taken to be evidence
suggesting that NP does not have polynomial-size circuits.

The proofs of the following are similar, so we leave them as exercises.

Exercise 1. If PSPACE ⊆ P/poly then PSPACE = Σp
2.

Exercise 2. If EXP ⊆ P/poly then EXP = Σp
2.

2 Circuit Lower Bounds for NP

In the previous lecture, we stated that one application of nonuniform models of computation is
in attempts to prove lower bounds for computing certain functions (in particular NP-complete
problems). In fact, there has been little progress in proving lower bounds for NP-complete problems.
We survey results in this section. Nontrivial lower bounds have been proven for restricted models
of computation - these are discussed in the next section.

2.1 Boolean Circuits

We only know the following facts in this area:

Theorem 2. C(f) = O(2n

n
) for any Boolean function f : {0, 1}n → {0, 1}

Using the naive encoding of the truth table into a DNF, we can get a O(n2n)-size circuit. A
better analysis gives the better bound.

Theorem 3. C(f) = Ω(2n

n
) for most Boolean functions f . That is, if we pick f uniformly at ran-

dom from the set of Boolean functions on n variables, the probability that C(f) = Ω(2n

n
) converges

to 1 as n grows.

Proof. Let s denote the number of binary gates. For each of the s gates, we can pick a variable or
some other gate as input, and each gate has at most 2 inputs. So, the number of circuits of size at
most s is at most (c(s+n)2)s, where c is some constant that also takes care of the possibility that the
input is negated. Since we can map circuits to Boolean functions, this is also the maximum number
of Boolean functions computable with at most s gates. We know that 22n

is the number of Boolean
functions on n variables, and (c(s + n)2)s = 2O(s log s). By setting s = d2n

n
for a sufficiently small

constant d, (c(s + n)2)s = 2O(s log s) = 2O(d 2
n

n
·(n log d−log n)) << 22n

. The claim then follows.

This shows that most Boolean functions require circuits of the maximum circuit size, up to a
constant factor. So we would expect that at least for complicated functions like those that capture
NP-complete problems, we can prove non-trivial lower bounds. However, that is not currently the
case. We do have the following lower bound, though.

Theorem 4. ∀c > 0 ∃L ∈ Σp
2 with CL(n) = Ω(nc)

Proof. Consider circuits described by binary strings of length nd. We claim that ∃y ∈ {0, 1}nd+1,
where y encodes the inclusion or exclusion of the first nd + 1 strings of a language Y , such that
none of the circuits is consistent with it.

Intuitively, with each bit in y, we can “kill” half of the remaining consistent circuits. That is,
we choose each bit in y by doing the opposite of the majority vote of the circuits that are consistent

2

with the previous bits of y. Since the number of circuits is /leq2nd

, nd bits leaves ≤ 1 consistent
circuit and nd + 1 bits leaves no consistent circuit.

Now, we must show that there is such a language Y in NP. The explicit construction of this
language that we have described is not necessary in NP, it requires the majority vote counts on
exponentially many circuits. It is then, essentially the same complexity as counting the number of
satisfying assignments which we will find later in the course is probably not in PH.

So, we can only assume that this language Y exists. And, in PH we have the power of guessing.
However, this Y may not be unique, to make it unique, we can

So we can encode this as:

∃y ∈{0, 1}nd+1

(1) ∀C ≤ nd C and y disagree on one of the first nd + 1 strings

(2) ∀z < y (1) fails for z

(3) x is one of the first nd + 1 strings and the xth bit of y is set

This accepts precisely the language L described above. But, the negation of (1) in (2) means
that we end up with Σp

3 instead of Σp
2. However, using today’s first result we have, two cases, either

NP ∈ P \ poly in which case Σp
3 = Σp

2, or NP /∈ P \ poly in which case their is some other language
L ∈ NP with CL(n) = Ω(nc) for all c.

3 Constant-Depth Circuits

Because we have been unable to prove lower bounds for NP-complete problems in the general
setting, we focus our attention on a restricted model - namely constant-depth circuits. We first
give some basic facts about constant-depth circuits, and then prove that they require exponential
size to even compute the parity function.

Definition 1 (constant-depth circuit). A constant-depth circuit is a Boolean circuit with unbounded
fan-in but whose depth is bounded by a constant.

This model might seem too restricted, but we have already mentioned that any function can
be computed by a depth 2 CNF or DNF. However, such a circuit is in general of exponential size,
and we would like to know if we can do better. We will see that even for the PARITY function,
the size required is exponential.

We have encountered constant-depth circuits before in the lecture on alternation, and we showed
that we can simulate alternation with constant-depth circuits of exponential fan-in. Today, we will
look at such circuits that are of polynomial size. In particular, we look at the following family of
classes:

Definition 2 (ACk). ACk = {L|CO(logk n)(Ln) is polynomial}, where CO(logk n)(Ln) denotes the

complexity of circuits with unbounded fan-in, depth O(logk n), and deciding the restriction of L to
length n.

For now, we are interested in AC0, the class of languages decidable by constant-depth circuits
of polynomial size. Let us now look at examples of languages in and not in AC0.

3

Proposition 1. The decision variant of binary addition is in AC0.

Proof. In this proof, all strings are indexed from the right. To determine the ith bit of the sum,
we only need to look at the ith bits of the summands and determine if there is a carry from the
bits in position (i − 1). We first introduce some notation. We will label each column from 1 up to
i − 1 depending on if it either: generates a carry bit, transmits a carry bit, or stops a carry bit. If
both input bits in the column are 1, the column is labeled g; if only one bit is 1, it is labeled t; and
if both bits are 0, the column is labeled s.

For there to be a carry from the (i − 1)st column, there must be a g at some point followed by
zero or more t columns. In other words, to determine if there is a carry into the ith position, our
job is reduced to detecting if the above string is of the form t∗g{s, g, t}∗. First of all, we use an OR
to guess the length of t∗g, and the number of possible lengths are at most linear in the input size.
For each length j, we need an AND to determine if the (i − j + 1)th symbol on the string is a g,
and XORs to ensure that the symbols after it are ts, and then we do a big AND over the XORs
and the AND. So, at the first level, we have an OR, at the second we have ANDs, and at the third
we have ANDs and XORs. Since XORs can be implemented in constant depth using ANDs, ORs
and NOTs, the overall circuit has constant depth.

We will discuss problems that can be computed in various ACk in a future lecture. We now
sketch a proof that PARITY requires exponential size to be computed by constant-depth circuits.

Definition 3. PARITY = {x : x has an odd number of 1s}

We also denote PARITY on n variables as
⊕

n.

Theorem 5. PARITY is not in AC0.

By proving this result, we will have also shown that PARITY cannot be computed by polynomial
size circuits with bounded fan-in and log-depth. This follows from Theorem 5 by using a divide-
and-conquer strategy.

In fact, the proof we outline today shows that Cd(
⊕

n) = 2Ω(n
1

d−1). As PARITY can be

computed by circuits of size 2O(n
1

d−1), this gives an exact characterization of the size of constant-
depth circuits required to compute parity.

The proof we present today uses the following tool.

Definition 4 (Random Restrictions). A p-random restriction on n variables is a random function
ρ : {x1, . . . , xn} → {∗, 0, 1}, such that for each i, independently, Pr[ρ(xi) = ∗] = p and Pr[ρ(xi) =
1] = 1−p

2 = Pr[ρ(xi) = 0]. If ρ(xi) = ∗ then we leave xi as a variable. Otherwise we set it to the
result of ρ(xi).

Note that if we apply a random restriction to a parity function, we get a parity function or its
complement on those bits set to ∗.

Proof sketch of Theorem 5. Let us start with some AC0 circuit C. WLOG, we assume that for each
level of C, there are only ANDs or ORs, and that the circuit alternates between these. We also
assume that the inputs to the circuit are the variables and their negations, allowing us to ignore
NOT gates for the most part.

The main ingredients of the proof are:

4

Proposition 2. C2(
⊕

n) = Θ(n2n−1).

Proof. For depth 2, we can easily prove an exponential lower bound. By assumption, the circuit
is either a DNF or a CNF. Let us assume that it is a DNF. Each of the AND terms check for a
setting of variables such that

⊕
n = 1. Thus they must contain all n variables. Otherwise, we can

flip a variable and at least one AND will not be able to detect the difference. There are 2n possible
n-variable AND terms in a DNF formula, and we only need half of them as only half of them check
for

⊕
n = 1. Since each AND must be of size n, and there must be 2n−1 of them, we get the bound

as stated.

Lemma 1 (Switching Lemma). Given a CNF with small bottom fan-in. Then we can apply a
random restriction that does not set to many variables so that with high probability the resulting
function can be written as a DNF with small bottom fan-in.

Note that the statement is trivial if the restriction can set all variables – the “not setting too
many variables” is important. Also, all of the qualifications like “not too many” and “small” need
to be quantified appropriately for the statement to hold but we keep the exposition of this approach
at a qualitative level.

Proof Idea. Consider an AND of ORs, where each OR has size at most k. Notice that a random
restriction is not very likely to set an OR to 0 since all literals involved need to be set to 0 for that
to happen. But if k is small, there is a nontrivial probability that this happens. There are two
cases:

1. There are a large number of pairwise disjoint ORs. In that case, there are many independent
events that can set the AND gate to 0, namely each of those pairwise disjoint ORs being set
to 0. Since each of those events happens with a nontrivial probability, the odds are that the
random restriction will set the AND gate to 0, in which case it can trivially be written as a
DNF will small bottom fan-in.

2. There is not a large number of pairwise disjoint ORs. Let V be a minimal set of variables
such that each OR queries at least one variable from V . Since there is a lot of overlap among
the ORs, V is small. If we query all the variables in V , then we have essentially reduced
our problem to a simpler one of the same type, namely the transformation of a CNF with
bottom fan-in at most k − 1. This is because each of the ORs contains at least one literal in
V . We then repeat the case distinction to that simpler problem, depending on the setting of
the variables in V .

Along every branch of this process, we will eventually end up in case 1. Since there are at most
k steps and each step involves querying a small number of variables, we end up with a decision tree
of small depth that represents the given CNF under a random restriction with high probability. A
decision tree of small depth can be turned into a DNF with small bottom fan-in by writing down
an OR over all paths in the decision tree that lead to acceptance of the AND of all the conditions
that define the path.

Note that we can also switch from a DNF to a CNF by considering the negation of the circuit.
We use the Switching Lemma to reduce the depth of the circuit by 1 at a time until we are

left with a circuit of depth 2. Suppose that the bottom gates are ANDs. To apply the switching

5

lemma, we need to ensure the gates at the bottom of the circuit have small fan-in. To ensure this,
we insert dummy OR gates below the AND gates. Namely, for each input x to the AND gate,
we replace that with x OR x. Now, we apply the switching lemma to the AND of ORs we have
created. With high probability, each application is successful in creating an OR of ANDs with
small bottom fan-in and without setting too many variables. Now the second bottom-most and
third bottom-most levels are both ORs and can be merged. This reduces the depth of the circuit
by 1 (back down to d since we added a level initially).

Now the circuit still has small bottom fan-in, so we can apply the switching lemma again. We
repeat this process until we get a circuit C ′ of depth 2. At this point, if C computed

⊕
n, then C ′

computes
⊕

m on some m-subset of the variables (those that were unset by the random restrictions).
At this point we use Proposition 2 to derive a lower bound on the size of the remaining circuit
(and thus also of the original circuit). If m is still relatively large, this gives an exponential lower
bound on the size of the original circuit. Further, there must be a positive probability that each
application of the switching lemma was indeed successful.

Next lecture, we give an alternate proof that PARITY requires exponential size constant-depth
circuits. This proof will use low-degree polynomial approximations rather than random restrictions.

The bound that we will get, Cd(
⊕

n) = 2Ω(n
1

2d) is not as tight as the previous result, but the
advantage is that it applies to circuits with gates other than AND, OR, NOT.

6

