
CS 710: Complexity Theory 2/16/2009

Lecture 9: Polynomial Approximations

Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski &
Piramanayagam Arumuga Nainar

Last time, we proved that no constant depth circuit can evaluate the parity function. We used
random restrictions to obtain a bound on the complexity of a circuit evaluating the parity of n
inputs. In this lecture, we give an alternative proof of a slightly weaker bound.

Using the random restriction method, we showed that Cd(⊕n) ≥ 2Ω(n
1

d−1 ). This is a tight bound
and uses the property that the parity function is sensitive to every bit of its input. We can also
derive a similar bound for the modm function defined as follows:

modm(x) =

{

0 if |x| ≡ 0 (mod m)
1 otherwise

(1)

where |x| is the number of non-zero bits in the input. Parity is a special case of modm at m = 2.
Another function that we can prove is not in AC0 is the majority function, which returns 1 when
more than half of the input bits are 1, and 0 otherwise. This can be proved by using the parity
function as a black box and is left as an exercise.

In this lecture, we use low degree polynomial approximations to show that Cd(⊕n) ≥ 2Ω(n
1
2d ).

Even though this is a weaker bound, the technique itself is interesting. Moreover, this result applies
even if we allow mod3 gates in the circuit. Finally, prove that constant-depth circuits are unable
to approximately evaluate parity.

1 Polynomial approximation method

Theorem 1. ⊕n 6∈ AC0. Specifically, Cd(⊕n) ≥ 2Ω(n
1
2d )

Proof. We prove this in two steps. First, we show that any constant-depth circuit can be approx-
imated using a low degree multivariate polynomial over the field Z3. Using Z3 gives, for free, the
ability to mimic mod3 gates. In general, if we use Zp for a prime number p, we can handle modp

gates. Second, we show that the parity function cannot be approximated using a multivariate
polynomial of sufficiently low degree over the field Z3.

Step 1: Consider a circuit C made of AND, OR, NOT and MOD3 gates. It can always be
represented as a multivariate polynomial of degree n where n is the size of the input. Our goal
is to represent it using a polynomial of lower degree, allowing errors if required. A literal x that
is directly passed as input to a gate can be represented using the polynomial x. This is the base
case of our construction. Now, we can assume that a polynomial Pi can be associated with the
ith input of other gate types (AND, OR, NOT, MOD3). The goal is to construct a polynomial P ′

that represents the output of the gate. Note that the number of inputs to any gate is at most |C|.
Construct each of the gates as follows:

1



NOT: If P ′ is the polynomial representing the input of a NOT gate, then 1−P ′ represents the
output. Notice that this representation doesn’t increase the degree of the polynomial or introduce
any additional error.

MOD3: The output of the gate is zero when
∑m

i=1 Pi ≡ 0 (mod 3). If the summation is 1 or 2,
the output is 1. Note that in the field Z3, 2 ·2 = 1. So, we can model the gate using the polynomial
P ′ = (

∑m
i=1 Pi)

2. This polynomial accurately models the gate and its degree is at most twice the
degree of any of its inputs.

OR: The output of the OR gate is 0 if (∀i) Pi = 0. Or, in other words, (∀i) (1 − Pi = 1).
Otherwise its output is one. This can be represented as follows:

α : P ′ = 1 −
m
∏

i=1

(1 − Pi) (2)

This representation is accurate but the degree of P ′ may be up to m times the degree of the Pi

with the largest degree. This can be much higher than the trivial bound n if there are many gates
and many levels in the circuit. To tackle this, we model P ′ as a random linear combination of Pi

for 1 ≤ i ≤ n. Let ri ∈ Z3 be the coefficient associated with Pi, chosen uniformly random. As with
MODm, we square the linear combination to keep the value of P ′ boolean. This leaves us with:

β : P ′ = (

m
∑

i=1

ri · Pi)
2 (3)

This makes the degree of P ′ at most twice that of the degree of its inputs. But it is definitely not an
accurate description of an OR gate. Evaluate the probability of Pi being different from the boolean
expression ∨n

i=1Pi. If Pi = 0 for all i, then irrespective of the values picked for the coefficients, the

output is correct. If Pi = 1 for at least one i, then

m
∑

i=1

ri · Pi is
∑

i|Pi=1

ri. This is the wrong value,

0, in one out of three cases for a random assignment of the coefficients. Thus, P ′ can introduce
errors in the representation with a probability at most 1

3 . As with any randomized algorithm, we
can repeat the above calculation for, say, t independent trials and see if the output of at least one
of the trials is one. (Note: An output of one will always be correct but an output of zero may be
wrong). This leads us to the third, and final, formulation of P ′.

P ′ = P ′
α(P ′

β1
(P̂ ), . . . P ′

βt
(P̂ )) (4)

Here, P ′
α is the application of P ′ as described in eqn. 2 on t inputs. P ′

βk
is the kth trial using the

formulation of P ′ in eqn. 3. P̂ is a shorthand for P1, P2, . . . Pm. The above formulation produces
a wrong output if all the trials produce the wrong output, i.e. with probability at most 1

3t . The
degree of P ′ increases by a factor of 2t: a factor t for the α-formulation and a factor of 2 for the
β-formulation.

AND: We can handle an AND gate in a similar way, resulting in an approximation P ′ with at
most a factor of 2t blow-up in the degree, and giving an imprecise value with probability at most
1
3t .

If the depth of the circuit is d, the degree of the polynomial P representing the entire circuit
will be at most (2t)d. P gives the wrong value only if the output of at least one of the gates in C

was wrong. This happens with probability at most |C|
3t . Note, this is not a very tight upper bound

2



but it is enough for this proof. A tighter bound would depend on the number of OR gates in C. By
averaging, the expected number of inputs for which P will give the wrong value is at most |C|

3t 2n

since there are 2n possible inputs of length n. There exists a choice for the random coefficients for
which P is wrong in no more than the expected number, derived above. More formally,

Lemma 1. There exists a choice of ri’s such that there exists a set G ⊆ {0, 1}n of relative size

µ(G) ≥ 1 − |C|
3t such that (∀x ∈ G) P (x) = C(x), where P is a polynomial of degree at most (2t)d

constructed as described above.

Here, µ(G) is the relative size of G with respect to the set of all possible inputs to C and is

equal to |G|
2n . This construction can be generalized to work over any field Zp for prime p, thus

allowing modp gates. The property of Z3 we used is that a2 ≡ 1 (mod 3) for all a 6≡ 0 (mod 3).
Thus, squaring a polynomial ensures boolean values. To work over Zp, we would instead raise
polynomials to the power p − 1 as ap−1 ≡ 1 (mod p) for all a 6≡ 0 (mod p). The degree of the
resulting polynomial is at most (p · t)d rather than (2t)d.

Step 2: In this step, given a polynomial P of some degree that approximates ⊕n on a subset G
of inputs, we establish an upper bound below which every function of n inputs has a corresponding
polynomial approximating it over G. By equating the number of such functions to the number of
polynomials with degrees not greater than the established upper bound, we derive the lower bound
on the depth of circuit C.

As a first step, we transform the inputs to a slightly more convenient domain: {−1, 1} instead
of {0, 1}.
Proposition 1. Suppose there exists a polynomial P of degree at most ∆ that computes ⊕n on a

set G ⊆ {0, 1}n. Then there exists a polynomial P ′ of degree at most ∆ and a set G′ ⊆ {−1, 1}n

such that µ(G′) = µ(G) and (∀x ∈ G′)
n

∏

i=1

xi = P ′(x).

The reason is that parity on boolean inputs is equivalent to multiplication over {−1, 1}.
Lemma 2. Suppose there exists a polynomial P ′ of degree at most ∆ that represents multiplication

in a set G′ ⊆ {−1, 1}n. Then each function f : G′ → Z3 has a multivariate polynomial Q over Z3

of degree at most n+∆
2 such that it represents f , i.e. (∀x ∈ G′)f(x) = Q(x).

Proof. Every function f has a multivariate polynomial of degree at most n. This is trivial because
we can hardwire every possible input using monomials of degree n. Let us start from one such
polynomial Q′ (such that f = Q′ on G′). Consider a monomial in Q′ of the form

∏

i∈I xi where I
is a subset of the input bits. Because we are only concerned with ±1 inputs, we can rewrite it as:

∏

i∈I

xi =
(

∏

i6∈I

x2
i

)(

∏

i∈I

xi

)

=
(

∏

i6∈I

xi

)(

n
∏

i=1

xi

)

(5)

=⇒
∏

i∈I

xi =
(

∏

i6∈I

xi

)

P ′(x) (6)

3



Eqn. 5 holds for any input x of n bits but eqn. 6 holds only for the inputs in the set G′. The LHS
of 6 has degree |I|. The RHS has a degree at most ∆ + |Ī | = ∆ + n − |I|. Averaging these gives
a minimum degree ≤ n+∆

2 . Thus, we can make the degree of every monomial in Q′ to not exceed
n+∆

2 .

Given the lemmas, we are now ready to prove the theorem. Suppose there exists a circuit C of
depth d computing ⊕n. From Lemma 1, there exists a polynomial P ′ of degree at most ∆ = (2t)d

that computes parity on a set G of relative size at least 1 − |C|
3t . Consequently, from Lemma 2, all

functions f : G′ → Z3 for some G′ such that |G| = |G′| can be represented using a multivariate
polynomial of degree at most n+∆

2 . The total number of such polynomials must be at least the
number of functions f from G′ to Z3.

The number of multivariate polynomials with degree at most n+∆
2 is exactly 3M where M is

the number of monomials of degree at most n+∆
2 . There are

(n
i

)

monomials of degree i, so

M =

n+∆
2

∑

i

(

n

i

)

The number of monomials of degree ≤ n
2 will be 2n−1 - half of the 2n possible monomials. The

remaining ∆
2 = Θ(∆) terms in the summation will be lower than

(n
n
2

)

- the maximum possible

number for any degree. Using Stirling’s approximation, we can show that:

(

n
n
2

)

= Θ

(

2n

√
n

)

Thus, M = 2n−1 + 2n · Θ
(

∆√
n

)

= 2n
(

1
2 + Θ

(

∆√
n

))

.

The number of functions of the form G′ → Z3 is 3|G
′| as one of 3 possible values can be assigned

to each element of G′. Because the number of functions of this form must be at most the number
of polynomials of degree at most (n + ∆)/2, 3|G

′| ≤ 3M or, in other words, |G′| ≤ M . This gives us
the following bound on the size of G′.

µ(G′) =
|G′|
2n

≤ M

2n
≤ 1

2
+ Θ

(

∆√
n

)

From Lemma 1, µ(G′) ≥ 1 − |C|
3t when ∆ = (2t)d. Thus,

1 − |C|
3t

≤ µ(G′) ≤ 1

2
+ Θ

(

(2t)d√
n

)

=⇒ |C| ≥ 3t

[

1

2
− Θ

(

(2t)d√
n

)]

Setting (2t)d = O(
√

n) gives a tight value for the RHS in the last equation. Thus, t = Θ(n
1
2d ).

This gives |C| ≥ 2Ω(n
1
2d ).

The only part of the above analysis that changes when working over Zp rather than Z3 is
that ∆ = (p · t)d rather than (2t)d. Thus the result holds with the same lower bound on |C| for

4



boolean circuits with modp gates for any prime p. In fact, the argument in the above proof can be
generalized to give a lower bound for circuits with modp gates to compute modq (recall that parity
is the special case of q = 2). This is achieved by viewing Step 2 as harmonic analysis over Z2 and
then generalizing that to harmonic analysis over Zq. As this generalization takes a bit of work to
prove, we leave it at that.

Because the lower bound for parity was proved by viewing parity as multiplication, we get a
lower bound for multiplication as well.

Corollary 1. The decision variant of binary multiplication is not in AC0.

We further use the proof above to give a lower bound on circuits that even approximate parity.

Corollary 2. A depth d unbounded fan-in circuit that agrees with parity on a fraction at least
1
2 + 1

n(1−ǫ)/2 of {0, 1}n must have size 2Ω(nǫ/2d).

Proof. Suppose we have a circuit that is correct on at least 1
2 +ρ of the inputs. Similar to Theorem

1, we can prove that there exists a polynomial of degree ∆ = (2t)d that is correct on a set G′ that

is at least 1
2 + ρ − |C|

3t of {0, 1}n. From Step 2 of the proof above,

1

2
+ ρ − |C|

3t
≤ 1

2
+ Θ

(

(2t)d√
n

)

=⇒ ρ − |C|
3t

≤ Θ

(

∆√
n

)

(7)

=⇒ |C| ≥ 3t

[

ρ − Θ

(

(2t)d√
n

)]

(8)

Note that the (2t)d/
√

n term is Ω(1/
√

n), so ρ must also be Ω(1/
√

n) to ensure the lower bound
we get is even positive. If we let ρ = 1/n(1−ǫ)/2, we set (2t)d = Θ(nǫ/2) to optimize the RHS of 8.

So t = Θ(nǫ/(2d)), and we get that |C| ≥ 2Ω(nǫ/(2d)).

The above corollary proves the inapproximability of the parity function using constant depth
circuits. There is another such result that can be proved using random restrictions. It is as follows:

Theorem 2. A depth d unbounded fan-in circuit that agrees with parity on a fraction at least
1
2 + 1

2Ω(n1/d)
of {0, 1}n must have size 2Ω(n1/d).

This is interesting because even trivial functions can guess parity correctly on half of the in-

puts. This is slightly weaker than the 2Ω(n
1

d−1 ) bound we derived last lecture but it disproves
approximability rather than computability of the parity function. We will see more such results of
inapproximability when we discuss pseudo-randomness.

2 Next lecture

Next lecture, we will discuss parallelism where we distribute the computational task among multiple
processors to reduce the time complexity.

5


