
CS 710: Complexity Theory 2/18/2010

Lecture 10: Parallelism

Instructor: Dieter van Melkebeek Scribe: Theodora Hinkle & Matt Elder

The goal of parallelism is to speed up computation by dividing it among many processors. It is
not trivial to do this, because there may be a sequence of operations to perform in a computation
that cannot be done in parallel. For example, in evaluating a boolean circuit you can do gates on
the same level in parallel, but it seems the levels must be done in sequence, so we don’t know how
to speed up circuits with respect to depth. For other problems we can acheive speedups in non
trivial ways. In this lecture, we discuss models for parallelism and complexity classes that capture
efficiently parallel-computable problems.

1 Conceptual Model

We want our model of parallelism to be of roughly the same power as large collections of interactive
Turing machines, all acting together through some means of communication.

Our model must capture this means of communication. Though analysis can be dependent on
the connectivity between processors, in our model, we will blithely assume that connections are
free because we want to abstract away from the issue of connectivity. This is not realistic; in real
parallel computers all processors will not be directly connected, but rather will have some routing
mechanism. There are several network configurations, like butterfly nets and hypercubes, that grow
at reasonable rates and yield communication between any two processors in log p time, where p is
the number of processors.

Our model must also impose some limits on the number of processors, and here our model
must diverge somewhat from physically realizable computers. If we allow only a constant number
of processors, then we can give only constant speedup over a standard Turing machine for any
problem. Thus, we must allow the number of processors to grow with the input size. This will
entail issues of uniformity.

Our criteria for efficiency change when we move from standard Turing machines to vastly parallel
computers; we will now aim for polylog time instead of polynomial time. To achieve this, we will
permit a number of processors polynomial in the size of the input.

2 Concrete Model

We model parallel computation with Uniform NC-Circuits. The class NC is very similar to AC
and is defined as follows:

Definition 1. NCk is the set of all languages recognizable by circuits with bounded fanin, polynomial

size, and O(logk n) depth. NC is the union of all classes NCk, that is, NC = ∪k≥0NCk.

An NC Circuit is uniform if the circuit can be computed from the size of its input in logarithmic

space. The uniformity condition is considered standard: unless otherwise specified, “NC” typically

means “Uniform NC.”

1

Thesis 1 L has an efficient parallel algorithm, in the sense of interacting TM’s, poly space, polylog time,
iff L is in logspace Uniform NC.

We leave it to the reader to verify that the complexity class Uniform NCk is closed under
composition and log–space mapping reductions.

3 Complexity of NC

Next we place the class L among the classes in the NCk hierarchy.

Theorem 1. Uniform NC1 ⊆ L ⊆ Uniform NC2.

Proof. First, we show that Uniform NC1 ⊆ L. Suppose that a uniform family F of NC1-circuits
decides language A. Then, given an input x, we can simulate F in logarithmic space as follows:

1. Compute the circuit C appropriate for |x|. More precisely, compute each bit of the description
of C as it is needed. We do not have enough space to store the entire description of the circuit,
but we can compute each part as we need it in logarithmic space because F is uniform. You
only have to keep track of the path from the root to where you are, which is logarithmic
because F has logarithmic depth and bounded fan in.

2. From the output node of C, compute the values of each gate in C recursively, without mem-
oization. This is painfully slow, but we wish to optimize for space. Since the depth of C is in
O(log |x|), we can do this computation in logarithmic space.

3. If the output of C is 1, accept. Else, reject.

The fact that L ⊆ Uniform NC2 is left as an exercise. The proof is similar to (). Look at the
computation tableau and guess the intermediate configuration from a polynomially many number
of possibilities. For each of the resulting logs, do some verification, write this down as a circuit,
what’s the depth of the circuit going to be? Each time you break the log into two, you get a
logarithmic number of break ups.

This gives us a fairly tight connection between space bounded computation and log depth
circuits.

We can also relate every class in the NC hierarchy to classes in the closely related AC hierarchy,
as follows:

Theorem 2. NCk ⊆ ACk ⊆ NCk+1.

Proof. Since NCk is a restriction of ACk, the first inclusion is clear. The second inclusion is implied
by the fact that polynomially-bounded fanin can be simulated by a simple logarithmic-depth circuit
of bounded fanin.

Theorem 3. ACk−1 ⊆ NCk ⊆ ACk

Proof. For ACk−1 ⊆ NCk, we do the same thing as before. Replace the unbounded and’s/or’s by
binary trees of bounded fan in and’s/or’s. NCk ⊆ ACk is an easy inclusion.

2

4 Languages in Various NC
k

To give a feel for the NC hierarchy, we see how efficiently some basic tasks can be accomplished in
parallel.

4.1 NC
0

The class NC0 contains, by definition, only those languages decidable by constant-depth, constant-
fanin circuits. This implies, among other things, that these problems must be decidable by checking
only a constant number of bits of the input.

4.2 NC
1

By Theorem 2, this class contains AC0, and thus contains, for example, binary addition. This class
also contains iterated addition.

Theorem 4. Iterated addition is in NC1.

Proof. Given three binary numbers, we can output two numbers with the same sum using a constant
depth circuit. Each triple of input bits contains 0 to 3 ones; thus we produce one binary number
containing the value of these additions modulo 2, and another binary number containing the carries.
For example, see Figure 1.

00111101
01111011
10010101

11010011
001111010+

+

carries
mod 2

Figure 1: Finding two numbers with the same sum as three different numbers.

This operation is possible with constant-depth circuits. So, we group all of our inputs into
groups of 3, apply this operation, and repeat until there remain only two inputs. This operation
reduces the number of remaining numbers to add by 1/3, so some logarithmic number of layers of
these circuits reduces the problem to binary addition, which is in NC1, as we have already seen.

Because iterated addition is in NC1, binary multiplication is also in NC1. We can also perform
matrix multiplication in NC1: we do every useful element-wise multiply in one binary multiplica-
tion layer, and follow it by a layer of iterated addition. Both subproblems are in NC1, so their
concatenation is in NC1.

A symmetric function is a function whose value does not change when its input bits are per-
muted; thus, its value is dependent only on the size and the number of ones in the input. Both
of these can be determined by iterated addition, so all symmetric functions are NC1–computable,
though not necessarily in Uniform NC1.

It is known that iterated multiplication is also Uniform NC1–computable, though this proof is
more complex.

3

4.3 NC
2

By a divide-and-conquer algorithm using circuits in NC1, we can show that iterated matrix mul-
tiplication is in NC2. This implies that matrix inversion, linear systems, and most of the rest of
linear algebra is NC2–computable.

4.4 Upper Bounds

For the classes NCk with k > 0, known upper bounds on computation power are quite weak. For
example, the truth of the following statements are all open questions:

• P ⊆ Uniform NC1?

• P ⊆ Uniform NC?

• NP ⊆ Uniform NC1?

CVP is the Circuit Value Problem: Given a circuit C and an input x, return what C would
output given x. Because CVP is P-complete under log-space mapping reductions, we know that P
is in Uniform NC iff CVP is NC-computable.

The following questions remain interesting even when nonuniform:
CV P ∈ NC1: We consider this unlikely but we can’t rule it out.

NP ∈ NC1

5 Connection Between NC1 and BP

The following theorem states that NC1 circuits and bounded-width branching programs of polyno-
mial size are equally powerful. The proof uses formulas, a restricted version of circuits.

Definition 2. A formula is a circuit in which all gates have a maximum fanout of 1.

Since every gate in a formula has a maximum fanout of 1, the number of gates in a formula
matches our notion of the size of a boolean expression. A standard circuit may have the shape of
any directed acyclic graph, but a formula must look like a rooted tree, except at the inputs. Thus,
a circuit might be much smaller than an equivalent formula by reducing duplication and sharing
outputs.

Theorem 5. The following are equivalent in power:

1. NC1 circuits

2. Polynomial–size formulas

3. Log–depth formulas

4. Bounded-width branching programs of polynomial size

Proof. We will show that each of the theorem’s elements can simulate its predecessor in the above
theorem; so, poly-size formulas capture NC1 circuits, log–depth formulas capture poly-size formulas,
and so on.

4

Proposition 1. NC1 circuits can be simulated by poly-size formulas.

Proof. Formulas are like circuits where the fan-out is at most 1. So, if you have a repeated part of
the formula, you must compute both occurences separately.

A circuit forms a rooted directed acyclic graph, with its root at the topmost operator. Given
an NC1–circuit, we can recursively transform it into an equivalent formula by recursively replacing
subgraphs. For each node with fanout k, with k > 1, we replace that node (and its child subgraph)
with k copies of the node (and its child subgraph) so that each node has fanout 1, and each node
is the child of one of the old parents. For example, the black node in Figure 2 gets transformed in
this way.

Figure 2: One step of the recursive transformation from NC1–circuit to poly–size formula.

The circuit has only one root for output. So, suppose we repeat this procedure at every node
from the root down on a circuit of maximum fanin f and depth d. The number of nodes at depth
t+1 is no more than f times the number of nodes at depth t, so there are at most f t nodes at layer
t. The size of the bottom layer dominates the size of the formula, so this process yields a formula
of size O(fd). Because all NC1 circuits have depth O(log n), the size of the formula is fO(log n),
which is polynomial in n. At each step, the function computed by the generated circuit remains
the same, so this process creates a poly-size formula equivalent to an NC1 circuit.

Proposition 2. Polynomial–size formulas can be simulated by log–depth formulas.

Proof. Given a formula with binary fanin, we can find an edge of the formula so that the sub-
formulas on either side of that edge are at least 1/3 the size of the whole formula. Let f be the
sub-formula at the low side of the cut edge, and let gx be the sub-formula on the high side of the
cut edge with the constant literal x placed where f was. Figure 3 illustrates these two trees.

From f and g, we create a formula with the same function as the original, but with decreased
depth. This formula is (f ∧ g1) ∨ (¬f ∧ g0), and is shown in Figure 4. To see that this formula
computes the same function as the original, consider the value of f . If f is 1 on its inputs, then the
original function would have had the value of g1. Likewise, if f is 0 on its inputs, then the original
function would have had the value of g0. So, the new function combines both cases.

We then recur the procedure on the sub-trees of f , g0, and g1. We continue recursing until
we are considering constant-size formulas. Let s be the size of the original formula. Notice that
f , g0, and g1 are each of size at most 2s/3. After applying the next step, the sub-formulas being

5

gf
x

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� x

Figure 3: First step in the transformation from polynomial size formulas to log-depth formulas. A
cut at a well-chosen edge of a formula yields two sub-formulas, f and g.

f f

g g1 0

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

1 0

Figure 4: Second step in the transformation from polynomial size formulas to log-depth formulas.
How to combine the two sub-formulas.

considered are further reduced by a factor of 2/3. Also notice that each level of recursion places
a depth two circuit at the top of the sub-formula being worked on. Then, the depth d of the final
formula generated satisfies the inequality 2 · (2/3)ds ≥ 1, in other words d = O(log s).

Proposition 3. Bounded-width branching programs of polynomial size can be simulated by NC1

circuits.

Proof. Suppose B is a branching program of width w, containing a polynomial number of layers p.
We construct an NC1 circuit to simulate B with the following divide–and–conquer strategy:

1. Place an OR gate, with fanin w. We will ensure that this OR gate is true if the input induces
a path from the start state in the first layer of B to the accepting state in the last layer (layer
p) of B.

2. At the ith input to the OR gate, place an AND gate with fanin two. This AND outputs true
if the input induces a path from the start state of the first layer, to the the ith state of layer
p/2, and to the accepting state of layer p. One input to this AND is true iff the sub-path
from layer 1 to layer p/2 is induced, and the other input is true iff the sub-path from layer
p/2 to layer p is induced.

6

3. Recur on the inputs of the ANDs until reaching the base case of checking adjacent layers.

Because p is polynomial, this divide–and–conquer strategy recurs only O(log(n)) times, giving
the constructed circuit a logarithmic depth. To analyze the size of the circuit, we rely on the fact
that we are generating a circuit and not a formula: once a sub-problem is computed once in the
circuit, we do not need to compute it again if it is needed again. There are roughly 2p intervals
considered in subproblems, and w2 subproblems of the form “Can state a in layer A be reached
from state b in layer B?” are asked for each interval. Thus, the number of individual “questions”
that our circuit computes is only 2pw2, which is polynomial in the size of the input. So, the circuit
we have constructed uses a polynomial number of gates; since it also has logarithmic depth, the
circuit is in NC1.

We will finish the proof of Theorem 5 in the next lecture by proving the following proposition.

Proposition 4. Log-depth formulas can be simulated by bounded–width branching programs of

polynomial size.

7

